首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new platinum(II) complex containing a pyridine nucleus and a dithiocarbamate moiety as ligands ([Pt(ESDT)(Py)Cl]) was evaluated for in vitro cytotoxicity in the cisplatin-sensitive human ovarian 2008 and in the isogenic-resistant C13* cell lines. In both cell types, a tumor cell growth inhibition greater than cisplatin and a complete lack of cross-resistance in C13* cells were found. Despite its molecular size, [Pt(ESDT)(Py)Cl] accumulation was much higher than cisplatin both in parent and resistant cells. Studying the mechanism of action in cell-free media, we established that [Pt(ESDT)(Py)Cl] more efficiently interacts with DNA in vitro compared to cisplatin maintaining a binding preference for GG rich sequences of DNA. On the contrary, DNA platination in vivo by [Pt(ESDT)(Py)Cl] was found lower than cisplatin. An analysis of the type of DNA lesions induced by [Pt(ESDT)(Py)Cl] suggests that the cytotoxic efficacy and the ability to overcome cisplatin resistance seem to be related to a different mechanism of interaction with DNA and/or with other key cellular components.  相似文献   

2.
Since apoptosis is the primary mode of cell death induced by cisplatin, the role of apoptosis and apoptosis-related gene products in cisplatin resistance was investigated in four human cisplatin-resistant cell lines of different tumour type. A common feature of the resistant sublines was a reduced susceptibility to drug-induced apoptosis compared to parental sensitive lines. Loss of wild-type p53 function was not a general event associated with the development of drug resistance. An increased bcl-2 expression was found in resistant cells characterized by mutant p53 (A431/Pt and IGROV-1/Pt), whereas in osteosarcoma (U2-OS/Pt) and in ovarian carcinoma (A2780/CP) cells with wild-type p53, bcl-2 levels were markedly reduced. U2-OS/Pt cells had a 16-fold increase in the level of Bcl-xL protein. Stable transfection of U2-OS cells with bcl-xL cDNA conferred a low level of drug resistance to cisplatin, suggesting that overexpression of this gene contributes to the ci splatin-resistant phenotype of this osteosarcoma cell system. In conclusion, these observations suggest a variable contribution of apoptosis-related genes to cisplatin resistance depending on the biological background of the cell system and presumably reflecting different pathways of apoptosis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Cisplatin is an effective antitumor agent for the treatment of several carcinomas. However, the development of resistance to cisplatin represents a serious clinical problem. The effects of auranofin, a gold(I) compound clinically used as an antirheumatic agent, on cisplatin-sensitive (2008) and-resistant (C13*) cancer cells were studied. Auranofin is more effective than cisplatin in decreasing cell viability and its action is particularly marked in C13* cells, indicating that no cross-resistance occurs. Furthermore, auranofin is able to permeate C13* cells more efficiently than 2008 cells. Treatment with auranofin determines a consistent release of cytochrome c in both cell lines, while cisplatin is effective only in sensitive cells. Both auranofin and cisplatin induce apoptosis in 2008 cells, while in C13* cells only auranofin is effective. Apoptosis is accompanied by an increased production of hydrogen peroxide that, however, is inhibited by N-acetyl-L-cysteine. In resistant cells, H(2)O(2) production is counteracted by a large overexpression of thioredoxin reductase that constitutes the preferred target of the inhibitory action of auranofin. This specific effect of auranofin might rationalize its ability in overcoming cisplatin resistance in human ovarian cancer cells.  相似文献   

4.

Background

Ovarian cancer is the leading cause of death among gynecological cancers. Cisplatin is one of the most effective anticancer drugs used in the treatment of ovarian cancer. Development of resistance to cisplatin limits its therapeutic use. Most of the anticancer drugs, including cisplatin, are believed to kill cancer cells by inducing apoptosis and a defect in apoptotic signaling can contribute to drug resistance. The tumor suppressor protein p53 plays a critical role in DNA damage-induced apoptosis. During a yeast-based drug screening, NSC109268 was identified to enhance cellular sensitivity to cisplatin. The objective of the present study is to determine if p53 is responsible for cisplatin sensitization by NSC109268.

Results

NSC109268 enhanced sensitivity of ovarian cancer 2008 cells and its cisplatin resistant counterpart 2008/C13* cells which express wild-type p53. The potentiation of cisplatin sensitivity by NSC109268 was greater in 2008/C13* cells compared to 2008 cells. Cisplatin caused a concentration-dependent increase in p53 in 2008 and 2008/C13* cells, and the induction of p53 correlated with cisplatin-induced apoptosis as determined by the cleavage of PARP. NSC109268 alone had no effect on p53 but it enhanced p53 level in response to cisplatin. Knockdown of p53 by siRNA, however, did not attenuate cell death in response to cisplatin or combination of NSC109268 and cisplatin.

Conclusions

These results demonstrate that NSC109268 enhances sensitivity of ovarian cancer 2008 cells to cisplatin independent of p53.  相似文献   

5.
Although cisplatin derivatives are first line chemotherapeutic agents for the treatment of ovarian epithelial cancer, chemoresistance is a major therapeutic problem. Although the cytotoxic effect of these agents are believed to be mediated through the induction of apoptosis, the role of the Fas/FasL system in chemoresistance in human ovarian epithelial cancer is not fully understood. In the present study, we have used cultures of established cell lines of cisplatin-sensitive human ovarian epithelial tumours (OV2008 and A2780-s) and their resistant variants (C13* and A2780-cp, respectively) to assess the role ofFas/FasL system in the chemo-responsiveness of ovarian cancer cells to cisplatin. Cisplatin was effective in inducing the expression of cell-associated Fas and FasL, soluble FasL and apoptosis in concentration and time-dependent fashion in both cisplatin-sensitive cell lines (OV2008 and A2780-s). In contrast, while cisplatin was effective in increasing cell-associated Fas protein content in C13*, it failed to up-regulate FasL (cell-associated and soluble forms) and induce apoptosis, irrespective of concentration and duration of cisplatin treatment. Concentrated spent media from OV2008 cultures after cisplatin treatment were effective in inducing apoptosis in C13* cells which was partly inhibited by the antagonistic Fas monoclonal antibody (mAb) suggesting that the soluble FasL present in the spent media was biologically active. In the resistant A2780-cp cells, neither Fas nor FasL up-regulation were evident in the presence of the chemotherapeutic agent and apoptosis remained low compared to its sensitive counterpart. Activation of the Fas signalling pathway, by addition to the cultures an agonistic Fas mAb, was equally effective in inducing apoptosis in the cisplatin-sensitive (OV2008) and -resistant variant C13*, although these responses were of lower magnitude compared to that observed with cisplatin in the chemosensitive cells. A significant interaction between cisplatin and agonistic Fas mAb was observed in the apoptotic response in OV2008 and C13* when cultured in the presence of both agents. Immunohistochemistry of human ovarian epithelial carcinomas reveals the presence of Fas in low abundance in proliferatively active cells but in high levels in quiescent ones. Although the expression pattern of FasL in the tumour was similar to that of Fas, the protein content was considerably lower. Taken together, these data suggest that the dysregulation of the Fas/FasL system may be an important determinant in cisplatin resistance in ovarian epithelial cancer cells. Our results are also supportive of the notion that combined immuno- and chemo-therapy (i.e., agonistic Fas mAb plus cisplatin) may provide added benefits in the treatment of both chemo-sensitive and -resistant ovarian tumours.  相似文献   

6.
7.
This study was designed to investigate the relationship between the attenuation of cisplatin-induced nephrotoxicity in experimental diabetes and the increased level of renal metallothionein (MT) reported to occur in this condition. Two groups of male Sprague-Dawley rats were used: 42-day streptozotocin diabetics and age-matched nondiabetics. Half of each group was injected with a nephrotoxic dose of cisplatin (5 mg/kg, ip) and half with vehicle. Four hours after injection, renal MT and platinum (Pt) content were quantified. Mean renal MT concentration in vehicle-injected diabetics was about triple that found in nondiabetics. Comparison of renal MT concentrations in cisplatin-injected diabetics and nondiabetics with their vehicle-injected counterparts suggested an inducing effect of the drug. In contrast to the marked elevations of MT in diabetic kidney, mean renal Pt concentration in the cisplatin-injected diabetic group was only about one-fourth that of the nondiabetic group. No difference was evident in the intracellular distribution Pt between cytosolic and particulate fractions from diabetic and nondiabetic kidneys. It was concluded that: (i) Sequestration of Pt by MT cannot account for the resistance of diabetic kidney to cisplatin toxicity. (ii) Rather, the resistance is due to a significant decrease in renal uptake/retention of cisplatin or derivatives during the critical first few hours after injection.  相似文献   

8.
Summary One descendant of the Medicago sativa Ra-3 transformant T304 was analysed with respect to the somatic stability of the synthetic phosphinothricin-N-acetyltransferase (pat) gene which was used as a selective marker and was under the control of the 5/3 expression signals of the cauliflower mosaic virus (CaMV) gene VI. In order to quantify gene instability, we developed a system for culturing and regenerating individual cells. Single cell suspension cultures derived from T304 and the ancestral non-transgenic M. sativa cultivar Ra-3, were established. The cells were regenerated into monoclonal calli. In transgenic calli, the phosphinothricin (Pt)-resistance phenotype was retained after more than 2 months of non-selective growth. In contrast, up to 12% of the suspension culture cells grown under non-selective conditions and at constant temperature (25° C) lost the herbicide-resistance phenotype within 150 days. Surprisingly, a heat treatment (37° C), lasting for 10 days, during the culture period resulted in an almost complete (95%) loss of the Pt resistance of the suspension culture cells. However, the frequency of cell division was identical in cultures grown under normal and heat treatment conditions. A biochemical test revealed that no phosphinothricin-N-acetyltransferase activity was present in heat treated, Pt-sensitive cells. The resistance level of the Pt-sensitive transgenic cells was equivalent to that of the wild-type cells. A PCR analysis confirmed the presence of the pat gene in heat treated, Pt-sensitive cells. From these results it is concluded that the Pt resistance gene was heat-inactivated at a high frequency in the M. sativa suspension cultures.  相似文献   

9.
10.
目的:探讨线粒体膜通透性转换孔(MPTP)抑制剂——环孢素A(CsA)对大鼠肺常温缺血/再灌注后细胞凋亡的影响。方法:健康SD大鼠30只,随机分为3组(n=10):假手术组、缺血/再灌注组(I/R组)和环孢素A干预组(CsA组)。复制在体肺缺血/再灌注损伤模型。采用原位缺口末端标记(TUNEL)法检测肺组织细胞凋亡,免疫组化技术检测肺组织细胞细胞色素C(CytC)的含量,以及分光光度计测定肺组织细胞caspase-3的活性。结果:I/R组肺组织细胞胞浆CytC的含量、caspase-3活性明显高于假手术组(P0.01),并观察到大量肺组织细胞凋亡的发生。CsA组与I/R组相比,CytC释放明显减少(P0.01),caspase-3活性减弱,细胞凋亡的发生率明显下降(P0.01)。结论:环孢素A可能通过抑制MPTP开放,减少缺血/再灌注后线粒体CytC的释放,从而减少肺组织细胞的凋亡。  相似文献   

11.
The cellular pharmacology of two pairs of cis and trans platinum complexes has been studied in three human ovarian carcinoma cell lines, a parental relatively cisplatin-sensitive line (CH1), a subline possessing acquired cisplatin resistance (3-fold; CH1cisR) and an intrinsically cisplatin resistant line (13-fold; SKOV-3). Growth inhibition studies showed that both JM335 [trans ammine (cyclohexylaminedichloro dihydroxo) platinum(IV)] and its platinum(II) dichloro homolog JM334 were relatively less cross-resistant against both acquired and intrinsic cisplatin resistant cells. In contrast, resistance circumvention was not apparent in these cell lines with their cis isomeric counterparts (JM149 for JM335 and JM118 for JM334). The trans compound JM335 was more potent than its cis isomer against all three cell lines. There was no clear correlation between intracellular accumulation following 2 h exposure to each compound and resulting DNA platination or growth inhibition. The selective activity of the trans platinum complexes against the SKOV-3 cell line correlated with a deficiency in the repair of adducts within a fragment of the N-ras gene induced by trans compounds whereas adducts induced by the cis counterparts, and cisplatin, were repaired. The CH 1 parental line appeared repair deficient at the gene-specific level to adducts induced by both cis (including cisplatin) and trans compounds. Resistance in CH1cisR was associated with a lack of gene-specific repair of lesions formed by JM118 and JM149. All four compounds induced apoptosis in all three cell lines, as measured by fluorescent microscopy and field inverted gel electrophoresis, although the kinetics of apoptosis was markedly faster for the trans versus cis compounds. In summary, the trans platinum complexes JM335 and JM334 possess unique cellular properties compared to their cis counterparts particularly with respect to gene specific repair of DNA adducts and the rate of induction of apoptosis.  相似文献   

12.
We demonstrated the localization of metallothionein (MT) in rat uterus and ovaries and in guinea pig mammary glands. During the cyclic changes from one estrous period to the next, strong MT immunostaining was found in the glandular epithelium of the endometrium and weak immunostaining was observed in the simple columnar epithelium. Interestingly, during estrus, the intensity of MT immunostaining decreased in the cytoplasm, whereas during metestrus, diestrus, and proestrus the intensity of strong and similar immunostaining was observed in both the cytoplasm and nucleus. During proestrus and estrus, the number of vaginal epithelial cells containing MT increased on the luminal side of the epithelium and inside the lumen. In rat ovary, strong immunostaining was observed in the cytoplasm and nucleus of granulosa-lutein cells of the corpus luteum and in the cytoplasm of the ovum. In mammary gland of non-pregnant guinea pig, very strong but scattered MT immunostaining was demonstrated in both cytoplasm and nucleus of some epithelial cells of the lactiferous ducts. The mammary tissue of the pregnant guinea pig showed an increase in MT staining in alveolar cells that had proliferated due to pregnancy. The presence of MT in the female reproductive organs, the tissues of which actively grow under the control of female sex hormones, indicates some as yet unknown association of MT with cell proliferation and differentiation.  相似文献   

13.
Many anticancer drugs cannot recognize selectively tumor tissues, and cause destruction to normal ones. Although it is very toxic, cisplatin is still one of the most applied chemotherapeutics used for treatment of sarcomas, carcinomas, etc. It causes severe side effects as a result of the lack of selectivity of the drug to tumor tissue and acquired or intrinsic resistance occurs. Wheat germ agglutinin (WGA) is a lectin that specifically recognizes transformed cells: prostate cancer cells, pancreatic cells etc., and is uptaken into the tumor cells for which it appears to be a suitable target for anticancer agents. A fluorescence spectroscopy method was used to study the interaction of WGA with four metal-based anticancer drugs: cisplatin, Pt porphyrin and two gold porphyrins. The affinity constant (k(D)) for binding of cisplatin with WGA was k(D) = 6.67 ± 2.5 μM. The hyperbolic curve indicated the presence of a single cisplatin binding site. The affinity of Au and Pt porphyrin to WGA (k(D) = 0.08-0.49 μM) is almost two orders of magnitude higher than that for cisplatin. We found that Pt porphyrin could displace fluorescent dye ANS showing an increase in the fluorescence intensity with a concomitant blue shift of the emission maximum suggesting that the compounds accommodate the same binding site. Current research characterizes the metalloanticancer binding capacity of WGA. Our results indicate that four metal-based anticancer agents have high affinity for WGA. Since WGA recognizes transformed cells, the obtained data show that this protein might have putative usage as a drug delivery molecule in cancer.  相似文献   

14.
T Yanagiya  N Imura  Y Kondo  S Himeno 《Life sciences》1999,65(14):PL177-PL182
Metallothionein (MT) is known to play a predominant role in the protection of cells from cadmium (Cd) toxicity. To investigate other factors involved in Cd resistance, we established Cd-resistant cell lines from simian virus 40-transformed MT null fibroblasts. Cd-resistant MT null cells, Cd-rA7 and Cd-rB5, developed approximately 10-fold resistance to Cd compared to parental cells, but showed no cross-resistance to Zn, Cu, Hg, Ni, As, cisplatin or H2O2. Accumulation of Cd in the resistant cells was 13-18% of that of parental cells after treatment with Cd for 24 h. A short-term experiment revealed that the rate of Cd incorporation into the Cd-resistant cells was suppressed, and the rate of Cd release was enhanced in the resistant cells compared with that of parental cells. These results indicate that the altered transport of Cd, slow uptake and rapid release, may confer resistance to Cd on the Cd-resistant cells established from MT null fibroblasts.  相似文献   

15.
Disturbance of apoptosis is an established factor in tumorigenesis. The role of apoptosis in tumor progression is not yet clear. In the present study we compared the tendency to spontaneous apoptosis (and the proliferative capacity) of tumor cells derived from primary (PT) and metastatic tumor (MT) cells of several AKR lymphoma variants. Apoptosis-related gene expression was also compared. Our results indicate that release from apoptosis has a role in the tumor progression of this T cell lymphoma. At the cellular level, a markedly lower apoptotic tendency was observed in MT than in PT cells. The existence of macrophages only in PT also supports the presence of apoptotic cells in local but not in MTs. By contrast, proliferative capacity does not determine tumor aggressiveness in this system. At the molecular level, we found a higher staining intensity for bcl-2 in MT than in PT cells, suggesting that bcl-2 might be responsible for the reduced apoptosis in MT compared to PT cells. Evidence for p53 overexpression was found in the MT cells of one of the variants but in none of the PT. Comparison of Fas receptor, unexpectedly showed an increased expression in MT versus PT cells, possibly indicating resistance to Fas-induced apoptosis in the MT cells.  相似文献   

16.
BackgroundReactive oxygen species (ROS)-mediated cancer therapeutic has been at higher appreciation than those mediated by reactive nitrogen species. Cytotoxic mechanism of a novel nitric oxide (NO) inducing-Pt coated Au nanoparticle (NP) has been comparatively studied with the well-established ROS inducing Pt-based anticancer drug cisplatin in human lung A549 carcinoma cells.MethodsCytotoxicity was evaluated by MTT assay, lactate dehydrogenase (LDH) release, thiobarbituric acid substances (TBARS) and C11-Boron dipyrromethene (BODIPY). ROS (O2·− and H2O2) was measured with dihydroethidium (DHE) and H2O2-specific sensor. Nitric oxide (NO) and mitochondrial dysfunction were evaluated respectively by NO-specific probe DAR-1 and JC-1. Autophagy was determined by lysotracker (LTR) and monodansylcadaverine (MDC) applied tandemly whereas apoptosis/necrosis by Hoechst/PI and caspase 3 activity.ResultsIC50 (concentration that inhibited cell viability by 50%) of Pt coated Au NP came to be 0.413 μM whereas IC50 of cisplatin came out to 86.5 μM in A549 cells treated for 24 h meaning NPs toxicity was over 200 times higher than cisplatin. However, no significant stimulation of intracellular ROS was observed at the IC50 of Pt coated Au NPs in A549 cells. However, markers like LDH release, TBARS, BODIPY and ROS were significantly higher due to cisplatin in comparison to Pt coated Au NP.ConclusionsPt coated Au NP caused NO-dependent mitochondrial dysfunction and autophagy. Mode of cell death due to NP was much different from ROS-inducing cisplatin.General significancePt coated Au NP offer promising opportunity in cancer therapeutic and warrants advanced study in vivo models of cancer.  相似文献   

17.
Programmed cell death or apoptosis is a mechanism for the elimination of cells that occurs not only in physiological processes but also in drug-induced tumor cell death. Thus, because cisplatin, cis-diamminechloroplatinum (II), produces important damages on the DNA inducing apoptosis in several cell lines it has become a widely used antitumor drug. However, cisplatin possesses some dose-limiting toxicities mainly nephrotoxicity. Pt(IV) complexes, such as iproplatin, ormaplatin, and JM216 are a new class of platinum complexes that exhibits less toxicity than cisplatin. Some of these complexes have shown significant antitumor activity and a low cross-resistance to cisplatin. In the present paper, we have analyzed the DNA binding mode and the cytotoxicity of a novel Pt(IV)-bis (monoglutarate) complex. The data show that this novel complex produces DNA interstrand cross-links to a higher extent and with a faster kinetics than cisplatin. Also the Pt(IV)-bis (monoglutarate) complex kills glioma cells at drug concentrations significantly lower than those of cisplatin. Interestingly, this Pt(IV) complex produces in the glioma cells characteristic features of apoptosis such as 'DNA laddering' and fragmented nuclei. Moreover, the p53 protein accumulates early in glioma cells as a result of Pt(IV)-bis (monoglutarate) treatment. These data indicate that the Pt(IV)-bis (monoglutarate) complex induces apoptosis in glioma cells through a p53-dependent pathway.  相似文献   

18.
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.  相似文献   

19.
Esophageal cancer related gene 2 (ECRG2) is a novel candidate of the tumor suppressor gene identified from human esophagus. To study the biological role of the ECRG2 gene, we performed a GAL4-based yeast two-hybrid screening of a human fetal liver cDNA library. Using the ECRG2 cDNA as bait, we identified nine putative clones as associated proteins. The interaction of ECRG2 and metallothionein 2A (MT2A) was confirmed by glutathione S-transferase pull-down assays in vitro and co-immunoprecipitation experiments in vivo. ECRG2 co-localized with MT2A mostly to nuclei and slightly to cytoplasm, as shown by confocal microscopy. Transfection of ECRG2 gene inhibited cell proliferation and induced apoptosis in esophageal cancer cells. In the co-transfection of ECRG2 and MT2A assays, cell proliferation was inhibited and apoptosis was slightly induced compared with control groups. When we used antisense MT2A to interdict the effect of MT2A, the inhibition of cell proliferation and induction of apoptosis were significantly enhanced. When we used antisense ECRG2 to interdict the effect of ECRG2 in the group of Bel7402 cells co-transfected with ECRG2 and MT2A, the inhibition of cell proliferation and induction of apoptosis disappeared. The results provide evidence for ECRG2 in esophageal cancer cells acting as a bifunctional protein associated with the regulation of cell proliferation and induction of apoptosis. ECRG2 might reduce the function of MT2A on the regulation of cell proliferation and induction of apoptosis. The physical interaction of ECRG2 and MT2A may play an important role in the carcinogenesis of esophageal cancer.  相似文献   

20.
Alteration of appropriate cell‐cycle progression and of closely related apoptotic process is a basic feature of tumour cells, and development of new tumour‐targeted agents focus on apoptosis, either during cell‐cycle arrest or following premature cell‐cycle checkpoint exit. Increasingly, epidemiological and experimental studies suggest that curcumin protects against cancer, not only because of its well‐known antioxidant properties, but also because it modulates intracellular signalling, which is related to cell proliferation and apoptosis. Cisplatin and oxaliplatin are first‐line drugs in treatment of many types of epithelial cancer and their combination with other cytostatics are under investigation to limit their side effects and resistance to them. Objectives: The aim of this study was to evaluate effects of a combined treatment using curcumin with cisplatin or with oxaliplatin, in a human ovarian cancer cell line (2008) and in its cisplatin‐resistant variant (C13). Results: Curcumin per se caused concentration‐dependent (0.1–100 µm ) and time‐persistent (24–72 h) reduction in cell proliferation, as well as altered cell cycle parameters and induced apoptosis, in both cell lines. When carcinoma cells were simultaneously exposed to curcumin and to cisplatin or oxaliplatin (at concentrations lower than IC50) cell viability was reduced more than with single‐drug treatment. Moreover, dose and time related effects of curcumin, when combined with platinum drugs, were linked to consistent reduction in cell cycling and increased apoptosis, in comparison with single‐drug treatment. These effects were significant both in wild type and in cisplatin‐resistant cells, indicating that curcumin was also able to increase sensitivity of resistant ovarian cancer cells to cisplatin. Conclusions: The data suggests that curcumin is an interesting natural compound capable of limiting cell proliferation and possibly increasing clinical impact of platinum drugs, in ovarian cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号