首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
《Ecohydrology》2018,11(4)
Fire may alter land cover throughout the landscape and affect run‐off responses to rainfall events in a burnt watershed. Therefore, the challenge is to understand the interactions between forest composition and fire patterns in a karstic, Mediterranean watershed that affects the run‐off regime. The aim of this research is to improve the understanding of the interactive effects of wildfire and land‐cover change on the rainfall–run‐off relationship in a first‐order watershed. To achieve this goal, satellite imagery, official spatial data, and hydrological modelling were used to study forest composition in relation to extreme fire and to simulate run‐off response for 2 rainfall events. The results show that an extreme wildfire had a greater impact on planted forest, composed mostly of pines, than on native species. Additionally, it was found that the land‐cover alternation due to fire affected the run‐off regime and contributed to an increase in maximum discharge and run‐off volume for the 2 rainfall events by ~39–47%. During the regeneration period, the run‐off response for the 2 rainfall events decreased by ~7.7–9%. Wildfires may impact the run‐off response more profoundly as the plantation of pine trees increases. A greater increase in run‐off response may endanger infrastructure in terms of flooding and affect the population well‐being. Watershed management in areas where afforestation is considered should focus on planting native species that are less flammable rather than introducing combustible pines, thus reducing the hydrologic impacts of land‐cover alteration due to wildfire, especially when climate warms and wildfires become more frequent and intense.  相似文献   

3.
4.
研究南麂岛的土地覆盖类型及其空间分布和结构特征。利用具有1米空间分辨率的IKONOS卫星遥感数据,提取南麂岛的植被覆盖和土地利用信息,获得草地、灌木林地、庄稼地和居民地等主要土地覆盖类型及其分布图。然后利用分形几何方法建立南麂岛土地覆盖类型特性分析模型,从斑块的面积效应、覆盖类型的分形分析、单个斑块的分形分析和覆盖类型分形特征差异显著性等方面进行分析讨论。研究结果表明,南麂岛的草地和灌木林地的分形维数较大,而庄稼地和居民地的分形维数较小,说明草地和灌木林地的斑块的结构特征和边界比庄稼地和居民地更为复杂。进一步研究表明,斑块的分形特性与其受人类活动的干扰程度密切相关。  相似文献   

5.
  总被引:6,自引:0,他引:6  
Aim In the framework of the Global Land Cover 2000 (GLC 2000), a land‐cover map of Africa has been produced at a spatial resolution of 1 km using data from four sensors on‐board four different Earth observing satellites. Location The map documents the location and distribution of major vegetation types and non‐vegetated land surface formations for the entire African continent plus Madagascar and the other surrounding islands. Methods The bulk of these data were acquired on a daily basis throughout the year 2000 by the VEGETATION sensor on‐board the SPOT‐4 satellite. The map of vegetation cover has been produced based upon the spectral response and the temporal profile of the vegetation cover. Digital image processing and geographical information systems techniques were employed, together with local knowledge, high resolution imagery and expert consultation, to compile a cartographic map product. Radar data and thermal sensors were also used for specific land‐cover classes. Results A total of 27 land cover categories are documented, which has more thematic classes than previously published land cover maps of Africa contain. Systematic comparison with existing land cover data and 30‐m resolution imagery from Landsat are presented, and the map is also compared with other pan‐continental land cover maps. The map and digital data base are freely available for non‐commercial uses from http://www.gvm.jrc.it/tem/africa/products.htm Main conclusions The map improves our state of knowledge of the land‐cover of Africa and presents the most spatially detailed view yet published at this scale. This first version of the map should provide an important input for regional stratification and planning purposes for natural resources, biodiversity and climate studies.  相似文献   

6.
Direct impacts of human land use and indirect impacts of anthropogenic climate change may alter land cover and associated ecosystem function, affecting ecological goods and services. Considerable work has been done to identify long‐term global trends in vegetation greenness, which is associated with primary productivity, using remote sensing. Trend analysis of satellite observations is subject to error, and ecosystem change can be confused with interannual variability. However, the relative trends of land cover classes may hold clues about differential ecosystem response to environmental forcing. Our aim was to identify phenological variability and 10‐year trends for the major land cover classes in the Great Basin. This case study involved two steps: a regional, phenology‐based land cover classification and an identification of phenological variability and 10‐year trends stratified by land cover class. The analysis used a 10‐year time series of Advanced Very High Resolution Radiometer satellite data to assess regional scale land cover variability and identify change. The phenology‐based regional classification was more detailed and accurate than national or global products. Phenological variability over the 10‐year period was high, with substantial shifts in timing of start of season of up to 9 weeks. The mean long‐term trends of montane land cover classes were significantly different from valley land cover classes due to a poor response of montane shrubland and pinyon‐juniper woodland to the early 1990s drought. The differential response during the 1990s suggests that valley ecosystems may be more resilient and montane ecosystems more susceptible to prolonged drought. This type of regional‐scale land cover analysis is necessary to characterize current patterns of land cover phenology, distinguish between anthropogenically driven land cover change and interannual variability, and identify ecosystems potentially susceptible to regional and global change.  相似文献   

7.
    
Aim To examine the geographical patterns of the interception of photosynthetically active radiation by vegetation and to describe its spatial heterogeneity through the definition of ecosystem functional types (EFTs) based on the annual dynamics of the Normalized Difference Vegetation Index (NDVI), a spectral index related to carbon gains. Location The Iberian Peninsula. Methods EFTs were derived from three attributes of the NDVI obtained from NOAA/AVHRR sensors: the annual integral (NDVI‐I), as a surrogate of primary production, an integrative indicator of ecosystem functioning; and the intra‐annual relative range (RREL) and month of maximum NDVI (MMAX), which represent key features of seasonality. Results NDVI‐I decreased south‐eastwards. The highest values were observed in the Eurosiberian Region and in the highest Mediterranean ranges. Low values occurred in inner plains, river basins and in the southeast. The Eurosiberian Region and Mediterranean mountains presented the lowest RREL, while Eurosiberian peaks, river basins, inner‐agricultural plains, wetlands and the southeastern part of Iberia presented the highest. Eurosiberian ecosystems showed a summer maximum of NDVI, as did high mountains, wetlands and irrigated areas in the Mediterranean Region. Mediterranean mountains had autumn–early‐winter maxima, while semi‐arid zones, river basins and continental plains had spring maxima. Based on the behaviour in the functional traits, 49 EFTs were defined. Main conclusions The classification, based on only the NDVI dynamics, represents the spatial heterogeneity in ecosystem functioning by means of the interception of radiation by vegetation in the Iberian Peninsula. The patterns of the NDVI attributes may be used as a reference in evaluating the impacts of environmental changes. Iberia had a high spatial variability: except for biophysically impossible combinations (high NDVI‐I and high seasonality), almost any pattern of seasonal dynamics of radiation interception was represented in the Peninsula. The approach used to define EFTs opens the possibility of monitoring and comparing ecosystem functioning through time.  相似文献   

8.
Land cover dynamics of different topographic conditions in Beijing, China   总被引:1,自引:0,他引:1  
Topographic conditions play an important role in controlling land cover dynamic processes. In this study, remotely sensed data and the geographic information system were applied to analyze the changes in land cover along topographic gradients from 1978 to 2001 in Beijing, a rapidly urbanized mega city in China. The study was based on five periods of land cover maps derived from remotely sensed data: Landsat MSS for 1978, Landsat TM for 1984, 1992, 1996 and 2001, and the digital elevation model (DEM) derived from 1:250,000 topographic map. The whole area was divided into ten land cover types: conifer forest, broadleaf forest, mixed forest, shrub, brushwood, meadow, farmland, built-up, water body and bare land. The results are summarized as follows. (1) Shrub, forest, farmland and builtup consist of the main land cover types of the Beijing area. The most significant land cover change from 1978 to 2001 was the decrease of the farmland and expansion of the builtup area. Farmland decreased from 6354 to 3813 km2 in the 23 years, while the built-up area increased from 421 to 2642 km2. Meanwhile, the coverage of forest increased from 17.2% to 24.7% of the total area. The conversion matrix analysis indicated that the transformation of farmland to the built-up area was the most significant process and afforestation was the primary cause of the replacement of shrub to forest. (2) Topographic conditions are of great importance to the distribution of land cover types and the process of land cover changes. Elevation has an intensive impact on the distribution of land cover types. The area below 100 m mostly consists of farmland and built-up areas, while the area above 100 m is mainly covered by shrub and forest. Shrub has the maximum frequency in areas between 100 and 1000 m, while forest has dominance in areas above 800 m. According to the analysis of land cover changes in different ranges of elevation, the greatest change below 100 m was the process of urbanization. The process of the main land cover change occurred above 100 m was the transformation from shrub to forest. This result was consistent with the vertical change of natural vegetation distribution in Beijing. (3) Slope has a great influence on the distribution of land cover. Farmland and built-up areas are mostly distributed in flat areas, while shrub and forest occupy steeper areas compared with other land cover types. Forest frequency increased with the increasing slope. Land cover changes differed from the slope gradients. In the plain area, the land cover change occurred as the result of urbanization. With the increasing of the slope gradient, afforestation, which converts shrub to forest, was the process of the primary land cover change. __________ Translated from Journal of Plant Ecology, 2006, 30(2): 239–251 [译自: 植物生态学报]  相似文献   

9.
Topographic conditions play an important role in controlling land cover dynamic processes.In this study,remotely sensed data and the geographic information system were applied to analyze the changes in land cover along topographic gradients from 1978 to 2001 in Beijing,a rapidly urbanized mega city in China.The study was based on five periods of land cover maps derived from remotely sensed data:Landsat MSS for 1978,Landsat TM for 1984,"1992,1996 and 2001,and the digital elevation model (DEM) derived from 1:250,000 topographic map.The whole area was divided into ten land cover types:conifer forest,broadleaf forest,mixed forest,shrub,brushwood,meadow,farmland,built-up,water body and bare land.The results are summarized as follows.(1) Shrub,forest,farmland and builtup consist of the main land cover types of the Beijing area.The most significant land cover change from 1978 to 2001 was the decrease of the farmland and expansion of the builtup area.Farmland decreased from 6354 to 3813 km2 in the 23 years,while the built-up area increased from 421 to 2642 km2.Meanwhile,the coverage of forest increased from 17.2% to 24.7% of the total area.The conversion matrix analysis indicated that the transformation of farmland to the built-up area was the most significant process and afforestation was the primary cause of the replacement of shrub to forest.(2) Topographic conditions are of great importance to the distribution of land cover types and the process of land cover changes.Elevation has an intensive impact on the distribution of land cover types.The area below 100 m mostly consists of farmland and built-up areas,while the area above 100 m is mainly covered by shrub and forest.Shrub has the maximum frequency in areas between 100 and 1000 m,while forest has dominance in areas above 800 m.According to the analysis of land cover changes in different ranges of elevation,the greatest change below 100 m was the process of urbanization.The process of the main land cover change occurred above 100 m was the transformation from shrub to forest.This result was consistent with the vertical change of natural vegetation distribution in Beijing.(3) Slope has a great influence on the distribution of land cover.Farmland and built-up areas are mostly distributed in fiat areas,while shrub and forest occupy steeper areas compared with other land cover types.Forest frequency increased with the increasing slope.Land cover changes differed from the slope gradients.In the plain area,the land cover change occurred as the result of urbanization.With the increasing of the slope gradient,afforestation,which converts shrub to forest,was the process of the primary land cover change.  相似文献   

10.
中国东北地区主要植被类型NDVI变化与气候因子的关系   总被引:38,自引:2,他引:38       下载免费PDF全文
张军  葛剑平  国庆喜 《生态学报》2001,21(4):522-527
利用1982~1992年时间序列的NOAA/AVHRR8km×8km分辨率的归一化植被指数(Normalizeddifferencevegetationindex,NDVI),将东经120°~135°、北纬40°~55°区域的土地覆盖类型分为10类。然后研究了各类型的NDVI年平均值的变化规律。结合该地区的19个气象站1982~1992年的年平均气温、年最高温度、年最低温度、年降水量和年相对湿度研究了各类型NDVI年平均值的变化与气候因子之间的关系,进一步阐明了气候因子是NDVI动态变化的主要原因。  相似文献   

11.
    
Aims 1. To characterize ecosystem functioning by focusing on above‐ground net primary production (ANPP), and 2. to relate the spatial heterogeneity of both functional and structural attributes of vegetation to environmental factors and landscape structure. We discuss the relationship between vegetation structure and functioning found in Patagonia in terms of the capabilities of remote sensing techniques to monitor and assess desertification. Location Western portion of the Patagonian steppes in Argentina (39°30′ S to 45°27′ S). Methods We used remotely‐sensed data from Landsat TM and AVHRR/NOAA sensors to characterize vegetation structure (physiognomic units) and ecosystem functioning (ANPP and its seasonal and interannual variation). We combined the satellite information with floristic relevés and field estimates of ANPP. We built an empirical relationship between the Landsat TM‐derived normalized difference vegetation index (NDVI) and field ANPP. Using stepwise regressions we explored the relationship between ANPP and both environmental variables (precipitation and temperature surrogates) and structural attributes of the landscape (proportion and diversity of different physiognomic classes (PCs)). Results PCs were quite heterogeneous in floristic terms, probably reflecting degradation processes. Regional estimates of ANPP showed differences of one order of magnitude among physiognomic classes. Fifty percent of the spatial variance in ANPP was accounted for by longitude, reflecting the dependency of ANPP on precipitation. The proportion of prairies and semideserts, latitude and, to a lesser extent, the number of PCs within an 8 × 8 km cell accounted for an additional 33% of the ANPP variability. ANPP spatial heterogeneity (calculated from Landsat TM data) within an 8 × 8 km cell was positively associated with the mean AVHRR/NOAA NDVI and with the diversity of physiognomic classes. Main conclusions Our results suggest that the spatial and temporal patterns of ecosystem functioning described from ANPP result not only from water availability and thermal conditions but also from landscape structure (proportion and diversity of different PCs). The structural classification performed using remotely‐sensed data captured the spatial variability in physiognomy. Such capability will allow the use of spectral classifications to monitor desertification.  相似文献   

12.
    
Aim Earth observation (EO) products are a valuable alternative to spectral vegetation indices. We discuss the availability of EO products for analysing patterns in macroecology, particularly related to vegetation, on a range of spatial and temporal scales. Location Global. Methods We discuss four groups of EO products: land cover/cover change, vegetation structure and ecosystem productivity, fire detection, and digital elevation models. We address important practical issues arising from their use, such as assumptions underlying product generation, product accuracy and product transferability between spatial scales. We investigate the potential of EO products for analysing terrestrial ecosystems. Results Land cover, productivity and fire products are generated from long‐term data using standardized algorithms to improve reliability in detecting change of land surfaces. Their global coverage renders them useful for macroecology. Their spatial resolution (e.g. GLOBCOVER vegetation, 300 m; MODIS vegetation and fire, ≥ 500 m; ASTER digital elevation, 30 m) can be a limiting factor. Canopy structure and productivity products are based on physical approaches and thus are independent of biome‐specific calibrations. Active fire locations are provided in near‐real time, while burnt area products show actual area burnt by fire. EO products can be assimilated into ecosystem models, and their validation information can be employed to calculate uncertainties during subsequent modelling. Main conclusions Owing to their global coverage and long‐term continuity, EO end products can significantly advance the field of macroecology. EO products allow analyses of spatial biodiversity, seasonal dynamics of biomass and productivity, and consequences of disturbances on regional to global scales. Remaining drawbacks include inter‐operability between products from different sensors and accuracy issues due to differences between assumptions and models underlying the generation of different EO products. Our review explains the nature of EO products and how they relate to particular ecological variables across scales to encourage their wider use in ecological applications.  相似文献   

13.
水分利用效率(water use efficiency,WUE)是陆地生态系统响应全球变化的重要参数,分析区域生态系统WUE的变化特征及其与气象因子之间的响应关系,对于区域生态系统碳水循环研究以及水资源的科学管理具有重要意义.本文以三江平原为研究区,基于MODIS GPP和ET遥感数据、气象数据以及2000年、2014...  相似文献   

14.
Land use change in sub-Saharan Africa continues apace, but its role in driving the declines of Afro-Palaearctic migrant birds is unknown. This is due partly to a lack of knowledge of migrants’ requirements on the wintering grounds, and of spatially explicit assessments of land cover change. We compared tree cover data derived from satellite remote sensing (available for the period 2000–2014) with distributional data from surveys in four West African countries for the Wood Warbler Phylloscopus sibilatrix, one such declining migrant, to determine the extent of, and change in, optimal tree cover. Wood Warblers were most likely to occur where tree cover per hectare was between 40 and 61% (optimal tree cover). Extrapolation to the whole of the wintering range indicated there was a 46.7% net increase in extent between 2000 and 2014. This was due to an alarming 27 683 km2 of previously closed forest being degraded from > 61% cover to between 40 and 61%, an area greater than that of the optimal tree cover that was lost. Increases in optimal tree cover were greatest in countries with greatest forest cover, such as Sierra Leone, Liberia, Côte d'Ivoire and Democratic Republic of Congo. The results suggest that loss of optimal tree cover in the wintering range might not be a key driver of population decline for Wood Warblers, but the degradation will probably impact species that rely upon dense tree cover.  相似文献   

15.
  总被引:2,自引:0,他引:2  
Accurate assessment of the spatial extent of forest cover is a crucial requirement for quantifying the sources and sinks of carbon from the terrestrial biosphere. In the more immediate context of the United Nations Framework Convention on Climate Change, implementation of the Kyoto Protocol calls for estimates of carbon stocks for a baseline year as well as for subsequent years. Data sources from country level statistics and other ground‐based information are based on varying definitions of ‘forest’ and are consequently problematic for obtaining spatially and temporally consistent carbon stock estimates. By combining two datasets previously derived from the Advanced Very High Resolution Radiometer (AVHRR) at 1 km spatial resolution, we have generated a prototype global map depicting percentage tree cover and associated proportions of trees with different leaf longevity (evergreen and deciduous) and leaf type (broadleaf and needleleaf). The product is intended for use in terrestrial carbon cycle models, in conjunction with other spatial datasets such as climate and soil type, to obtain more consistent and reliable estimates of carbon stocks. The percentage tree cover dataset is available through the Global Land Cover Facility at the University of Maryland at http://glcf.umiacs.umd.edu .  相似文献   

16.
    
In land change science studies, a cover type is defined by land surface attributes, specifically including the types of vegetation, topography and human structures, which makes it difficult to characterize land cover as discrete classes. One of the challenges in characterizing a land-cover type is to distinguish variability within the class from actual land-cover transformation. The spread of plant invasions in tropical systems is affected by seasonal variations and disturbances such as agricultural activities and fires, making it difficult to determine the spread through thematic classifications. In this paper, we estimate the changes in spatial extent and seasonal variation of bracken fern invasion in Southern Yucatán from 1989 to 2005 by using a linear mixture model (LMM), a widely used method in the classification of remotely sensed data. The results show an increase in areas affected by bracken from 40 km2 in 1989 to almost 80 km2 in 2000. Lower estimates of the invasion resulted from data acquired at the end of the dry season (March–May), when bracken mixes with secondary vegetation or is removed by fires. The accuracy of the maps is estimated through the use of sketch maps of farmer's parcels and field data collected from 2000 to 2001. Understanding the spatial distribution and annual variability of bracken fern cover in the region is critical to determining the relation between disturbances such as fire and forest recovery. Using LMM may enhance this understanding by giving a more accurate picture of the extent and distribution of bracken fern invasion.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

17.
基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究   总被引:61,自引:0,他引:61  
在遥感(RS)、地理信息系统(GIS)、全球定位系统(GPS)———3S支持下,利用连续时间序列的1km×1km分辨率的NOAAAVHRR数字影像,通过主分量分析和非监督分类,对中国植被进行了宏观分类。在多种基础图件的支持下,结合归一化植被指数(NDVI)年内季节变化规律,分出35个植被类型,9个植被型组。通过重建不同植被类型NDVI特征值10年的时间变化序列,划分出4个内部各类型NDVI变化过程具有相对一致性的区域(二级区域),明显的呈现从东南到西北的带状分布。再逐级归并,产生两个变化的一级区域。区域的界线基本与我国三大自然区域的东部季风区西北部的界线相吻合。进而从NDVI动态变化的角度进行了区划,包括2个一级区域,9个二级区域,进一步阐明了中国植被NDVI动态变化的区域差异。  相似文献   

18.
    
Fire seasons have become increasingly variable and extreme due to changing climatological, ecological, and social conditions. Earth observation data are critical for monitoring fires and their impacts. Herein, we present a whole-system framework for identifying and synthesizing fire monitoring objectives and data needs throughout the life cycle of a fire event. The four stages of fire monitoring using Earth observation data include the following: (1) pre-fire vegetation inventories, (2) active-fire monitoring, (3) post-fire assessment, and (4) multi-scale synthesis. We identify the challenges and opportunities associated with current approaches to fire monitoring, highlighting four case studies from North American boreal, montane, and grassland ecosystems. While the case studies are localized to these ecosystems and regional contexts, they provide insights for others experiencing similar monitoring challenges worldwide. The field of remote sensing is experiencing a rapid proliferation of new data sources, providing observations that can inform all aspects of our fire monitoring framework; however, significant challenges for meeting fire monitoring objectives remain. We identify future opportunities for data sharing and rapid co-development of information products using cloud computing that benefits from open-access Earth observation and other geospatial data layers.  相似文献   

19.
    
Question: How do meteorological variations at seasonal, interannual scales differentially affect the canopy dynamics of four contrasting landscape units within a region? Location: Flooding Pampa, Buenos Aires, Argentina. 5000 km2. Central point: 35°15′S, 57°45′W. Methods: We used a 19‐year series of the normalized difference vegetation index (NDVI) derived from NOAA‐AVHRR PAL (Pathfinder AVHRR Land) images and meteorological data provided by a nearby weather station. The NDVI was used as surrogate of canopy photosynthetic status. The relationship between annually integrated NDVI and meteorological conditions was explored by stepwise multiple regressions for each defined unit. PC A was performed to compare units and growing seasons on a multivariate basis. Results: Mean seasonal NDVI curve was similarly shaped among landscapes. However, the absolute values differed widely. There was high interannual variation so that the mean seasonal pattern was seldom observed in any particular year. Annually integrated NDVI of all landscapes was negatively associated with summer temperature and positively with previous year precipitation. It was also directly related with current year winter precipitation in two landscapes and with summer precipitation in the others. NDVI response to September and March precipitation accounted for some of the differences in interannual variation among landscapes. Conclusions: Our results revealed a strong intra‐regional variation of canopy dynamics, closely linked to landscape (vegetation‐soil) and water availability (mainly in summer and during the previous year). These links may be used to predict forage production rates for livestock.  相似文献   

20.
景观生态学原理在城市土地利用分类中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
根据城市相同土地利用类型具有相似景观格局特征的原理,探讨了融合景观格局特征指数和遥感技术的城市土地利用信息提取的新方法。以北京市五环内建城区为例,研究表明,在斑块类型水平和景观水平上,居住用地和非居住用地内景观斑块的大小、形状、边缘特征、空间连接度、核心区面积特征、多样性、均匀性等特征都有极显著的差异。进一步融合TM遥感影像和这些景观格局特征指数,提取了居民用地和非居民用地类型,总分类精度是79.7%,Kappa系数达到59.8%。研究揭示,景观生态学原理的引入,为传统的遥感技术应用提供了新的思路,在格局复杂的城市土地利用信息提取中有很大的应用发展潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号