首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cancer develops when molecular pathways that control the fine balance between proliferation, differentiation, autophagy and cell death undergo genetic deregulation. The prospects for further substantial advances in the management of colorectal cancer reside in a systematic genetic and functional dissection of these pathways in tumor cells. In an effort to evaluate the impact of p38 signaling on colorectal cancer cell fate, we treated HT29, Caco2, Hct116, LS174T and SW480 cell lines with the inhibitor SB202190 specific for p38alpha/beta kinases. We report that p38alpha is required for colorectal cancer cell homeostasis as the inhibition of its kinase function by pharmacological blockade or genetic inactivation causes cell cycle arrest, autophagy and cell death in a cell type-specific manner. Deficiency of p38alpha activity induces a tissue-restricted upregulation of the GABARAP gene, an essential component of autophagic vacuoles and autophagosomes, whereas simultaneous inhibition of autophagy significantly increases cell death by triggering apoptosis. These data identify p38alpha as a central mediator of colorectal cancer cell homeostasis and establish a rationale for the evaluation of the pharmacological manipulation of the p38alpha pathway in the treatment of colorectal cancer.  相似文献   

2.
《Autophagy》2013,9(5):468-471
Autophagy is a vacuolar process leading to the degradation of long-lived proteins and cytoplasmic organelles in eukaryotes. This process has an important role in normal and cancer cells during adaptation to changing environmental conditions, cellular and tissue remodeling, and cell death.

To date, several signaling cascades have been described to regulate autophagy in a cell type-specific and signal-dependent manner.

We found that pharmacological blockade of the p38 pathway in colorectal cancer cells, either by the inhibitor SB202190 or by genetic ablation of p38α kinase, causes cell cycle arrest and autophagic cell death. In these cells, a complex network of intracellular kinase cascades controls autophagy and survival since the effect of p38α blockade is differentially affected by the pharmacological inhibition of MEK1, PI3K class I and III, and mTOR or by the differentiation status.

Collectively, our results suggest an opportunity for exploiting the pharmacological manipulation of the p38α pathway in the treatment of colorectal cancer. Given the number of drugs, currently available or under development, that target the p38 pathway, it stands to reason that elucidating the molecular mechanisms that link p38 and autophagy might have an impact on the clinical translation of these drugs.

Addendum to:

A Novel Cell Type-Specific Role of p38α in the Control of Autophagy and Cell Death in Colorectal Cancer Cells

F. Comes, A. Matrone, P. Lastella, B. Nico, F.C. Susca, R. Bagnulo, G. Ingravallo, S. Modica, G. Lo Sasso, A. Moschetta, G. Guanti and C. Simone

Cell Death Differ 2007; 14: 693-702  相似文献   

3.
《Autophagy》2013,9(7):1098-1112
Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.  相似文献   

4.
Sphingosylphosphorylcholine (SPC), an important lipid mediator in blood, inhibits the proliferation and migration of various cancer cells. However, its effect as a cell-specific sphingolipid in breast cancer cells is still unknown. Here, we showed that SPC promoted autophagy and apoptosis in triple-negative breast cancer MDA-MB-231 cells. Autophagy worked as a negative regulator of apoptosis-induced by SPC. Mechanistically, SPC mediated apoptosis via activating c-Jun N-terminal kinase (JNK). Meanwhile, p38MAPK (p38) and protein kinase B (PKB or AKT) signaling pathways were also activated to inhibit apoptosis, suggesting that SPC could evoke multiple signaling pathways to modulate cell apoptosis. In addition, the crosstalk between autophagy, p38, AKT and JNK is that autophagy, p38, and AKT attenuated the JNK. AKT and p38 were in the downstream of autophagy, which is autophagy/AKT/p38 signaling evoked by SPC to antagonize JNK signaling and subsequent apoptosis. Although the pathways that antagonize apoptosis were evoked, the cells eventually reached apoptosis by SPC. Therefore, the combination with pharmacological autophagy inhibitors would be a more effective therapeutic strategy for eliminating breast cancer cells by SPC.  相似文献   

5.
Cdc7 is a serine/threonine kinase that plays essential roles in the initiation of eukaryotic DNA replication and checkpoint response. In previous studies, depletion of Cdc7 by small interfering RNA was shown to induce an abortive S phase that led to the cell cycle arrest in normal human fibroblasts and apoptotic cell death in various cancer cells. Here we report that stress-activated p38 MAP kinase was activated and responsible for apoptotic cell death in Cdc7-depleted HeLa cells. The activation of p38 MAP kinase in the Cdc7-depleted cells was shown to depend on ATR, a major sensor kinase for checkpoint or DNA damage responses. Only the p38 MAP kinase, and not the other stress-activated kinases such as JNK or ERK, was activated, and both caspase 8 and caspase 9 were activated for the induction of apoptosis. Activation of apoptosis in Cdc7-depleted cells was completely abolished in cells treated with small interfering RNA or an inhibitor of the p38 MAP kinase, suggesting that p38 MAP kinase activation was responsible for apoptotic cell death. Taken together, we suggest that the ATR-dependent activation of the p38 MAP kinase is a major signaling pathway that induces apoptotic cell death after depletion of Cdc7 in cancer cells.  相似文献   

6.
Recently we have shown that the mitogen-activated protein kinase (MAPK) MAPK14/p38α is involved in resistance of colon cancer cells to camptothecin-related drugs. Here we further investigated the cellular mechanisms involved in such drug resistance and showed that, in HCT116 human colorectal adenocarcinoma cells in which TP53 was genetically ablated (HCT116-TP53KO), overexpression of constitutively active MAPK14/p38α decreases cell sensitivity to SN-38 (the active metabolite of irinotecan), inhibits cell proliferation and induces survival-autophagy. Since autophagy is known to facilitate cancer cell resistance to chemotherapy and radiation treatment, we then investigated the relationship between MAPK14/p38α, autophagy and resistance to irinotecan. We demonstrated that induction of autophagy by SN38 is dependent on MAPK14/p38α activation. Finally, we showed that inhibition of MAPK14/p38α or autophagy both sensitizes HCT116-TP53KO cells to drug therapy. Our data proved that the two effects are interrelated, since the role of autophagy in drug resistance required the MAPK14/p38α. Our results highlight the existence of a new mechanism of resistance to camptothecin-related drugs: upon SN38 induction, MAPK14/p38α is activated and triggers survival-promoting autophagy to protect tumor cells against the cytotoxic effects of the drug. Colon cancer cells could thus be sensitized to drug therapy by inhibiting either MAPK14/p38 or autophagy.  相似文献   

7.
8.
The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.  相似文献   

9.
Ceramide pathways modulate ethanol-induced cell death in astrocytes   总被引:4,自引:0,他引:4  
We showed previously that alcohol exposure during in vivo brain development induced astroglial damage and caused cell death. Because ceramide modulates a number of biochemical and cellular responses to stress, including apoptosis, we now investigate whether ethanol-induced cell death in astrocytes is mediated by ceramide signalling pathways triggering apoptosis. Here we show that both ethanol and ceramide are able to induce apoptotic death in cultured astrocytes, in a dose-dependent manner, and that C2-ceramide addition potentiates the apoptotic effects of ethanol. Cell death induced by ethanol is associated with stimulation of neutral and acidic sphingomyelinase (SMase) and ceramide generation, as well as with activation of stress-related kinases, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK) pathways. We also provide evidence for the participation of JNK and p38 in ethanol-induced cell death, because pharmacological inhibitors of these kinases largely prevent the apoptosis induced by ethanol or by ethanol and C2-ceramide. Furthermore, we show that ethanol-induced ERK activation triggers the stimulation of cyclo-oxygenase-2 (COX-2) and the release of prostaglandin E2, and that blockade of the mitogen-activated protein kinase kinase (MEK)/ERK pathway by PD98059 abolishes the up-regulation of COX-2 induced by ethanol plus ceramide, and decreases the ethanol-induced apoptosis. These results strongly suggest that ethanol is able to stimulate the SMase-ceramide pathway, leading to the activation of signalling pathways implicated in cell death. These findings provide an insight into the mechanisms involved in ethanol-induced astroglial cell death during brain development.  相似文献   

10.
Colorectal cancer is the second most common cause of cancer death in the world and about half of the patients with colorectal cancer require adjuvant therapy after surgical resection. Therefore, the eradication of cancer cells via chemotherapy constitutes a viable approach to treating patients with colorectal cancer. In this study, the effects of bufalin isolated from a traditional Chinese medicine were evaluated and characterized in HT-29 and Caco-2 human colon cancer cells. Contrary to its well-documented apoptosis-promoting activity in other cancer cells, bufalin did not cause caspase-dependent cell death in colon cancer cells, as indicated by the absence of significant early apoptosis as well as poly(ADP-ribose) polymerase and caspase-3 cleavage. Instead, bufalin activated an autophagy pathway, as characterized by the accumulation of LC3-II and the stimulation of autophagic flux. The induction of autophagy by bufalin was linked to the generation of reactive oxygen species (ROS). ROS activated autophagy via the c-Jun NH2-terminal kinase (JNK). JNK activation increased expression of ATG5 and Beclin-1. ROS antioxidants (N-acetylcysteine and vitamin C), the JNK-specific inhibitor SP600125, and JNK2 siRNA attenuated bufalin-induced autophagy. Our findings unveil a novel mechanism of drug action by bufalin in colon cancer cells and open up the possibility of treating colorectal cancer through a ROS-dependent autophagy pathway.  相似文献   

11.
Mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases that transmit various extracellular signals to the nucleus inducing gene expression, cell proliferation, and apoptosis. Recent studies have revealed that organotin compounds induce apoptosis and MAPK phosphorylation/activation in mammal cells. In this study, we elucidated the cytotoxic mechanism of tributyltin (TBT), a representative organotin compound, in rainbow trout (Oncorhynchus mykiss) RTG-2 cells. TBT treatment resulted in significant caspase activation, characteristic morphological changes, DNA fragmentation, and consequent apoptotic cell death in RTG-2 cells. TBT exposure induced the rapid and sustained accumulation of phosphorylated MAPKs, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38 MAPK). Further analysis using pharmacological inhibitors against caspases and MAPKs showed that TBT also induced cell death in a caspase-independent manner and that p38 MAPK is involved in TBT-induced caspase-independent cell death, whereas JNK is involved in the caspase-dependent apoptotic pathway. Thus, TBT employs at least two independent signaling cascades to mediate cell death in RTG-2 cells. To our knowledge, this is the first study revealing the relationship between MAPK activation and TBT cytotoxicity in RTG-2 cells.  相似文献   

12.
13.
We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that the Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the α isoform of p38 MAPK (p38α MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38α MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.  相似文献   

14.
Piperlongumine (PL), a natural product isolated from the plant species Piper longum L., can selectively induce apoptotic cell death in cancer cells by targeting the stress response to reactive oxygen species (ROS). Here we show that PL induces cell death in the presence of benzyloxycarbonylvalyl-alanyl-aspartic acid (O-methyl)-fluoro-methylketone (zVAD-fmk), a pan-apoptotic inhibitor, and in the presence of necrostatin-1, a necrotic inhibitor. Instead PL-induced cell death can be suppressed by 3-methyladenine, an autophagy inhibitor, and substantially attenuated in cells lacking the autophagy-related 5 (Atg5) gene. We further show that PL enhances autophagy activity without blocking autophagy flux. Application of N-acetyl-cysteine, an antioxidant, markedly reduces PL-induced autophagy and cell death, suggesting an essential role for intracellular ROS in PL-induced autophagy. Furthermore, PL stimulates the activation of p38 protein kinase through ROS-induced stress response and p38 signaling is necessary for the action of PL as SB203580, a p38 inhibitor, or dominant-negative p38 can effectively reduce PL-mediated autophagy. Thus, we have characterized a new mechanism for PL-induced cell death through the ROS-p38 pathway. Our findings support the therapeutic potential of PL by triggering autophagic cell death.  相似文献   

15.
16.
Colorectal cancer is one of the most common cancer types and the third leading cause of cancer-related death in the western world. Generally, colorectal cancers are resistant to anticancer drugs. Several lines of evidence support a critical role for cyclooxygenase-2 (COX-2) during colorectal tumorigenesis and its role in chemoresistance. In this study, we focused our interest on the role played by COX-2 in apoptosis induced in HT-29 human colorectal cancer cells by ursolic acid (UA), a triterpenoid found in a large variety of plants. We showed that UA-induced apoptosis and that COX-2 was overexpressed only in apoptotic cells. We demonstrated that this overexpression was mediated by the p38 MAP kinase pathway as inhibiting its activation using a p38-specific inhibitor, SB 203580, abrogated COX-2 expression. Inhibiting COX-2 expression either by using a p38-specific inhibitor or COX-2-specific siRNA increased apoptosis. These results demonstrated that COX-2 was involved in a resistance mechanism to UA-induced apoptosis in HT-29 cells. Cells undergoing apoptosis were able to trigger a resistance mechanism by overexpressing a protein such as COX-2 to delay their death. Furthermore, we demonstrated that this resistance mechanism was independent of PGE2 production as the addition of the specific COX-2 activity inhibitor, NS-398, did not affect apoptosis in UA-treated cells.  相似文献   

17.
Activation of the mitotic checkpoint by chemotherapeutic drugs such as taxol causes mammalian cells to arrest in mitosis and then undergo apoptosis. However, the biochemical basis of chemotherapeutic drug-induced cell death is unclear. Herein, we provide new evidence that both cell survival and cell death-signaling pathways are concomitantly activated during mitotic arrest by microtubule-interfering drugs. Treatment of HeLa cells with chemotherapeutic drugs activated both p38 mitogen-activated protein kinase (MAPK) and p21-activated kinase (PAK). p38 MAPK was necessary for chemotherapeutic drug-induced cell death because the p38 MAPK inhibitors SB203580 or SB202190 suppressed cell death. Dominant-active MKK6, a direct activator of p38 MAPK, also induced cell death by stimulating translocation of Bax from the cytosol to the mitochondria in a p38 MAPK-dependent manner. Dominant active PAK suppressed this MKK6-induced cell death. PAK seems to mediate cell survival by phosphorylating Bad, and inhibition of PAK in mitotically arrested cells reduced Bad phosphorylation and increased apoptosis. Our results suggest that therapeutic strategies that suppress PAK-mediated survival signals may improve the efficacy of current cancer chemotherapies by enhancing p38 MAPK-mediated cell death.  相似文献   

18.
19.
The secreted autotransporter toxin, Sat, which belongs to the subfamily of serine protease autotransporters of Enterobacteriaceae, acts as a virulence factor in extraintestinal and intestinal pathogenic strains of Escherichia coli. We observed that HeLa cells exposed to the cell-free culture supernatant of recombinant strain AAEC185p(Sat-IH11128) producing the Sat toxin (CFCS(Sat) ), displayed dramatic disorganization of the F-actin cytoskeleton before loosening cell-to-cell junctions and detachment. Examination of the effect of Sat on GFP-microtubule-associated protein light chain 3 (LC3) HeLa cells revealed that CFCS(Sat) -induced autophagy follows CFCS(Sat) -induced F-actin cytoskeleton rearrangement. The induced autophagy shows an acceleration of the autophagy flux soon after Sat treatment, followed later by a blockade of the flux leading to the accumulation of large GFP-LC3-positive vacuoles in the cell cytoplasm. CFCS(Sat) did not induce cell detachment in autophagy-deficient mouse embryonic fibroblasts in contrast with wild-type mouse embryonic fibroblasts. The CFCS(Sat) -induced large GFP-LC3 dots do not display the characteristics of autophagolysosomes including expression of cathepsin D and Lamp-1 and 2 proteins, and Lysotracker Red- and DQ-BSA-positive labelling. We provide evidences that CFCS(Sat) -induced autophagy is not a cell response intended to get rid of the intracellular toxin. By a pharmacological blockers approach, we found that the blockade of Erk1/2 and p38 MAPKs, but not JNK, inhibited the CFCS(Sat) -induced autophagy and cell detachment whereas phosphatidylinositol-3 kinase blockers inhibiting canonical autophagy were inactive. When attached CFCS(Sat) -treated cells start to detach they showed caspase-independent cell death and rearrangements of the focal adhesion-associated vinculin and paxillin. Collectively, our results support that Sat triggers autophagy in epithelial cells that relies on its cell-detachment effect.  相似文献   

20.
Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L., has shown preclinical anticancer efficacy in various cancer models. However the effects of mollugin in regulating cancer cell survival and death remains undefined. In the present study we found that mollugin exhibited cytotoxicity on various cancer models. The suppression of cell viability was due to the induction of mitochondria apoptosis. In addition, the presence of autophagic hallmarks was observed in mollugin-treated cells. Notably, blockade of autophagy by a chemical inhibitor or RNA interference enhanced the cytotoxicity of mollugin. Further experiments demonstrated that phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) and extracellular regulated protein kinases (ERK) signaling pathways participated in mollugin-induced autophagy and apoptosis. Together, these findings support further studies of mollugin as candidate for treatment of human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号