首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Yeast hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), a homodimer, was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics over a wide range of the inhibitor concentration. The second-order-rate constant for the inactivation of hexokinase was estimated to be 45 M-1.s-1. Hexokinase was protected more by sugar substrates than by nucleoside triphosphates during inactivation by o-phthalaldehyde. Absorption spectrum (lambda max 338 nm), and fluorescence excitation (lambda max 363 nm) and emission (lambda max 403 nm) spectra of the hexokinase-o-phthalaldehyde adduct were consistent with the formation of an isoindole derivative. These results also suggest that sulfhydryl and epsilon-amino functions of the cysteine and lysine residues, respectively, participating in the isoindole formation are about 3 A apart in the native enzyme. About 2 mol of the isoindole per mol of hexokinase dimer were formed following complete loss of the phosphotransferase activity. Chemical modification of hexokinase by iodoacetamide in the presence of mannose resulted in the modification of six sulfhydryl groups per mol of hexokinase with retention of the phosphotransferase activity. Subsequent reaction of the iodoacetamide modified hexokinase with o-phthalaldehyde resulted in complete loss of the phosphotransferase activity with concomitant modification of the remaining two sulfhydryl groups of hexokinase. Chemical modification of hexokinase by iodoacetamide in the absence of mannose resulted in complete inactivation of the enzyme. The iodoacetamide inactivated hexokinase failed to react with o-phthalaldehyde as evidenced by the absence of a fluorescence emission maximum characteristic of the isoindole derivative. The holoenzyme failed to react with [5'-(p-fluorosulfonyl)benzoyl]adenosine. The dissociated hexokinase could be inactivated by [5'-(p-fluorosulfonyl)benzoyl]adenosine; the degree of inactivation paralleled the extent of reaction between o-phthalaldehyde and the nucleotide-analog modified enzyme. Thus, it is concluded that two cysteines and lysines at or near the active site of the hexokinase were involved in reaction with o-phthalaldehyde following complete loss of the phosphotransferase activity. An important finding of this investigation is that the lysines, involved in isoindole formation, located at or near the active site are probably buried.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Chicken liver mitochondrial phosphoenolpyruvate carboxykinase is inactivated by o-phthalaldehyde. The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 29 M-1 s-1 at pH 7.5 and 25 degrees C. The modified enzyme showed maximal fluorescence at 427 nm upon excitation at 337 nm, consistent with the formation of isoindole derivatives by the cross-linking of proximal cysteine and lysine residues. Activities in the physiologic reaction and in the oxaloacetate decarboxylase reaction were lost in parallel upon modification with o-phthalaldehyde. Plots of (percent of residual activity) versus (mol of isoindole incorporated/mol of enzyme) were biphasic, with the initial loss of enzymatic activity corresponding to the incorporation of one isoindole derivative/enzyme molecule. Complete inactivation of the enzyme was accompanied by the incorporation of 3 mol of isoindole/mol of enzyme. beta-Sulfopyruvate, an isoelectronic analogue of oxaloacetate, completely protected the enzyme from reacting with o-phthalaldehyde. Other substrates provided protection from inactivation, in decreasing order of protection: oxaloacetate greater than phosphoenolpyruvate greater than MgGDP, MgGTP greater than oxalate. Cysteine 31 and lysine 39 have been identified as the rapidly reacting pair in isoindole formation and enzyme inactivation. Lysine 56 and cysteine 60 are also involved in isoindole formation in the completely inactivated enzyme. These reactive cysteine residues do not correspond to the reactive cysteine residue identified in previous iodoacetate labeling studies with the chicken mitochondrial enzyme (Makinen, A. L., and Nowak, T. (1989) J. Biol. Chem. 264, 12148-12157). Protection experiments suggest that the sites of o-phthalaldehyde modification become inaccessible when the oxaloacetate/phosphoenolpyruvate binding site is saturated, and sequence analyses indicate that cysteine 31 is located in the putative phosphoenolpyruvate binding site.  相似文献   

3.
Fluorescence spectrum of camel lens zeta-crystallin, a major protein in the lens of camelids and histicomorph rodents, showed maximum emission at 315 nm. This emission maximum is blue shifted compared to most proteins, including alpha-crystallin, and appeared to be due to tryptophan in highly hydrophobic environment. Interaction of NADPH with zeta-crystallin quenched the protein fluorescence and enhanced the fluorescence of bound NADPH. Analysis of fluorescence quenching suggested high-affinity interaction between NADPH and zeta-crystallin with an apparent Km<0.45 microM. This value is at least an order of magnitude lower than that suggested by activity measurements. Analysis of NADPH fluorescence showed a biphasic curve representing fluorescence of free- and bound-NADPH. The intersection between free- and bound-NADPH closely paralleled the enzyme concentration, suggesting one mole of NADPH was bound per subunit of the enzyme. Phenanthrenequinone (PQ), the substrate of zeta-crystallin, also was able to quench the fluorescence of zeta-crystallin, albeit weaker than NADPH. Quantitative analysis suggested that zeta-crystallin had low affinity for PQ in the absence of NADPH, and PQ binding induced significant conformational changes in zeta-crystallin.  相似文献   

4.
Ahn JY  Choi S  Cho SW 《Biochimie》1999,81(12):1123-1129
Incubation of two types of glutamate dehydrogenase (GDH) isoproteins from bovine brain with o-phthalaldehyde resulted in a time-dependent loss of enzyme activity. The inactivation was partially prevented by preincubation of the GDH isoproteins with 2-oxoglutarate or NADH. Spectrophotometric studies indicated that the inactivation of GDH isoproteins with o-phthalaldehyde resulted in isoindole derivatives characterized by typical fluorescence emission spectra with a stoichiometry of one isoindole derivative per molecule of enzyme subunit. There were no differences between the two GDH isoproteins in sensitivities to inactivation by o-phthalaldehyde indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Tryptic peptides of the isoproteins, modified with and without protection, identified a selective modification of one lysine as in the region containing the sequence L-Q-H-G-S-I-L-G-F-P-X-A-K for both GDH isoproteins. The symbol X indicates a position for which no phenylthiohydantoin-amino acid could be assigned. The missing residue, however, can be designated as an o-phthalaldehyde-labeled lysine since the sequences including the lysine residue in question have a complete identity with those of the other mammalian GDHs. Also, trypsin was unable to cleave the labeled peptide at this site. Both amino acid sequencing and compositional analysis identified Lys-306 as the site of o-phthalaldehyde binding within the brain GDH isoproteins.  相似文献   

5.
Interaction of camel lens zeta-crystallin with the hydrophobic probe 1-anilinonaphthalene-8-sulfonic acid (ANS) enhanced the ANS fluorescence and quenched the protein fluorescence. Both of these events were concentration-dependent and showed typical saturation curves suggesting specific ANS-zeta-crystallin binding. Quantitative analysis indicated that 1 mole zeta-crystallin bound at most 1 mole ANS. NADPH but not 9,10-phenanthrenequinone (PQ) was able to displace zeta-crystallin-bound ANS. These results suggested the presence of a hydrophobic domain in zeta-crystallin, possibly at the NADPH binding site. alpha-Crystallin as well as NADPH protected zeta-crystallin against thermal inactivation suggesting the importance of this site for enzyme stability. The NADPH:quinone oxidoreductase activity of zeta-crystallin was inhibited by ANS with NADPH as electron donor and PQ as electron acceptor. Lineweaver-Burk plots indicated mixed-type inhibition with respect to NADPH, with a K(i) of 2.3 microM. Secondary plots of inhibition with respect to NADPH indicated a dissociation constant (K'I) of 12 microM for the zeta-crystallin-NADPH-ANS complex. The K(i) being smaller than K'I suggested that competitive inhibition at the NADPH binding site was predominant over non-competitive inhibition. Like ANS-zeta-crystallin binding, inhibition was dependent on ANS concentration but independent of incubation time.  相似文献   

6.
Guanosine cyclic 3',5'-monophosphate (cGMP) dependent protein kinase is inactivated by o-phthalaldehyde. The loss of phosphotransferase activity following treatment with o-phthalaldehyde was rapid, and the second-order rate constant at 25 degrees C and pH 7.3 was 35 M-1 s-1. The inactivation reaction did not follow saturation kinetics. The cGMP-dependent protein kinase was protected from inactivation by its substrates, MgATP and Ser-peptide. Fluorescence excitation and emission spectroscopic data showed that an isoindole derivative was formed following the reaction between cGMP-dependent protein kinase and o-phthalaldehyde. Four moles of isoindole per mole of the cGMP-dependent protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. In the absence of cGMP, the protein kinase lost only 50% of its cGMP binding activity while there was almost a complete loss of its phosphotransferase activity. Studies in the presence of 20 microM cGMP, however, showed that about 2 mol of isoindole groups per mole of the protein kinase dimer was formed following complete inactivation by o-phthalaldehyde. The second-order rate constant for inactivation of cGMP-dependent protein kinase by o-phthalaldehyde in the presence of 20 microM cGMP was 40 M-1 s-1. Fluorescence measurements of samples containing inactivated, iodoacetamide-modified, or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified, cGMP-dependent protein kinase and o-phthalaldehyde showed that the intensity of fluorescence in each case was about 50% of that obtained from unmodified, active cGMP-dependent protein kinase and o-phthalaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

8.
The two activities of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by o-phthalaldehyde. Absorbance and fluorescence spectra of the modified enzyme were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme subunit). The inactivation of 6-phosphofructo-2-kinase by o-phthalaldehyde was faster than the inactivation of fructose-2,6-bisphosphatase, which was concomitant with the increase in fluorescence. The substrates of 6-phosphofructo-2-kinase did not protect the kinase against inactivation, whereas fructose-2,6-bisphosphate fully protected against o-phthalaldehyde-induced inactivation of the bisphosphatase. Addition of dithiothreitol prevented both the increase in fluorescence and the inactivation of fructose-2,6-bisphosphatase, but not that of 6-phosphofructo-2-kinase. It is proposed that o-phthalaldehyde forms two different inhibitory adducts: a non-fluorescent adduct in the kinase domain and a fluorescent isoindole derivative in the bisphosphatase domain. A lysine and a cysteine residue could be involved in fructose-2,6-bisphosphate binding in the bisphosphatase domain of the protein.  相似文献   

9.
Interaction of camel lens zeta-crystallin, an NADPH:quinone oxidoreductase, with several quinone derivatives was examined by fluorescence spectroscopy and activity measurements. Fluorescence of zeta-crystallin was quenched to different levels by the different quinones:juglone (5-OH, 1,4 naphthoquinone), 1,4 naphthoquinone (1,4-NQ), and 1,2 naphthoquinone (1,2-NQ) considerably quenched the fluorescence of zeta-crystallin, where as the commonly used substrate, 9,10-phenanthrenequinone (PQ) did not induce significant quenching. Activity measurements showed only PQ served as a substrate for camel lens zeta-crystallin, while juglone, 1,4-NQ, and 1,2-NQ were inhibitors. Thus quinones that interacted with zeta-crystallin directly inhibited the enzyme, whereas the substrate had very low affinity for the enzyme in the absence of NADPH. Another substrate, dichlorophenol indophenol (DCIP), conformed to the same pattern; DCIP did not quench the fluorescence of the enzyme significantly, but served as a substrate. This pattern is consistent with an ordered mechanism of catalysis with quinone being the second substrate. All three naphthoquinones were uncompetitive inhibitors with respect to NADPH and noncompetitive with respect to PQ. These kinetics are similar to those exhibited by cysteine- and/or lysine-modifying agents. Juglone, 1,4-NQ, and 1,2-NQ interacted with and quenched the fluorescence of camel lens alpha-crystallin, but to lesser extent than that of zeta-crystallin.  相似文献   

10.
Pigeon liver fatty acid synthetase (FAS) was inactivated irreversibly by stoichiometric concentration of o-phthalaldehyde exhibiting a bimolecular kinetic process. FAS-o-phthalaldehyde adduct gave a characteristic absorption maxima at 337 nm. Moreover this derivative showed fluorescence emission maxima at 412 nm when excited at 337 nm. These results were consistent with isoindole ring formation in which the -SH group of cysteine and epsilon-NH2 group of lysine participate in the reaction. The inactivation is caused by the reaction of the phosphopantetheine -SH group since it is protected by either acetyl- or malonyl-CoA. The enzyme incubated with iodoacetamide followed by o-phthalaldehyde showed no change in fluorescence intensity but decrease in intensity was found in the treatment of 2,4,6-trinitrobenzenesulphonic acid (TNBS), a lysine specific reagent with the enzyme prior to o-phthalaldehyde addition. As o-phthalaldehyde did not inhibit enoyl-CoA reductase activity, so nonessential lysine is involved in the o-phthalaldehyde reaction. Double inhibition experiments showed that 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a thiol specific reagent, binds to the same cysteine which is also involved in the o-phthalaldehyde reaction. Stoichiometric results indicated that 2 moles of o-phthalaldehyde were incorporated per mole of enzyme molecule upon complete inactivation.  相似文献   

11.
Guo Q  Chen B  Wang X 《Biochemistry. Biokhimii?a》2004,69(12):1336-1343
Inactivation of arginine kinase (AK) of Stichopus japonicus by o-phthalaldehyde (OPTA) was investigated. The modified enzyme showed an absorption peak at 337 nm and a fluorescent emission peak at 410 nm, which are characteristic of an isoindole derivative formed by OPTA binding to a thiol and an amine group in proximity within the enzyme. Loss of enzymatic activity was concomitant with an increase in fluorescence intensity at 410 nm. Stoichiometry studies by Tsou's method showed that among the cysteine residues available for OPTA modification in the enzyme, only one was essential for the enzyme activity. This cysteine residue is located in a highly hydrophobic environment, presumably near ATP and ADP binding region. This conclusion was verified by 5,5 -dithiobis(2-nitrobenzoic acid) modification. In addition, these results were supported by means of electrophoresis and ultraviolet, fluorescence, circular dichroism spectroscopy and fast performance liquid chromatography. Sequence comparison suggested that this essential cysteine residue maybe the conservative Cys274.  相似文献   

12.
A fluorescent chemoaffinity label o-phthalaldehyde (OPTA) was used to ascertain the conformational flexibility and polarity at the active site of xylanase I (Xyl I). The kinetics of inactivation of Xyl I with OPTA revealed that complete inactivation occurred due to the binding of one molecule of OPTA to the active site of Xyl I. The formation of a single fluorescent isoindole derivative corroborated these findings. OPTA has been known to form a fluorescent isoindole derivative by crosslinking the proximal thiol and amino groups of cysteine and lysine. The involvement of cysteine in the formation of a Xyl I-isoindole derivative has been negated by fluorometric and chemical modification studies on Xyl I with group-specific reagents and by amino-acid analysis. The kinetic analysis of diethylpyrocarbonate-modified Xyl I established the presence of an essential histidine at or near the catalytic site of Xyl I. Modification of histidine and lysine residues by diethylpyrocarbonate and 2,4,6-trinitrobenzenesulfonic acid, respectively, abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating that histidine and lysine participate in the formation of the isoindole complex. A mechanism for the reaction of OPTA with histidine and lysine residues present in the protein structure has been proposed. Experimental evidence presented here suggests for the first time that the active site of Xyl I is conformationally more flexible and more easily perturbed in the presence of denaturants than the molecule as a whole. The changes in the fluorescence emission maxima of a model compound (isoindole adduct) in solvents of different polarity were compared with the fluorescence behaviour of the Xyl I-isoindole derivative, leading to the conclusion that the active site is located in a microenvironment of low polarity.  相似文献   

13.
Interaction of camel lens zeta-crystallin with aspirin was investigated by activity and fluorescence measurements. Aspirin minimally inhibited the oxidoreductase activity of the enzyme and weakly quenched its fluorescence. However, significant fluorescence quenching of zeta-crystallin coincided with the appearance of a fluorescence signal characteristic of salicylic acid thereby raising the possibility that salicylic acid might have been the moiety responsible for inhibition and fluorescence quenching. Direct fluorescence measurements showed that zeta-crystallin had a much higher affinity for salicylic acid than aspirin (K(i) of about 24 microM for salicylic acid versus 630 microM for aspirin). Salicylic acid was also far more effective in inhibiting zeta-crystallin than aspirin (K(i) values were 23 microM versus 820 microM, respectively). Inhibition kinetics suggested that salicylic acid interacted with zeta-crystallin via a binding site that was distinct from that of NADPH. Salicylic acid also interacted with and quenched the fluorescence of camel lens alpha-crystallin suggesting a general mode of interaction with lens proteins. Within the normal therapeutic concentrations of salicylic acid or aspirin, only crystallin-salicylic acid interactions might be significant. These results showed that camel lens zeta- and alpha-crystallin exhibited remarkable selectivity for salicylic acid over aspirin, and thus, could be considered as salicylate-binding proteins.  相似文献   

14.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

15.
A cross-linked modification of Lys residue located at the subsite of the enzyme active site of Taka-amylase A was attained by the use of the fluorescent reagent of o-phthalaldehyde (OPA). The fluorescence and uv absorption at 337 nm derived from the isoindole ring, which was produced by cross-linking through the epsilon-amino group of Lys and the thiol group of the Cys residue, provided the evidence for the OPA-mediated inactivation of Taka-amylase A. Kinetic analysis showed that 1 mol of OPA per mole of enzyme was incorporated, which corresponded closely with the value obtained by the uv absorption. Because the OPA inactivation was retarded by the substrate analog of alpha-cyclodextrin, OPA modification was classified as a type of affinity labeling reaction. A remarkable increase in the pI value from 4.0 to 5.6 upon the modification led to clear separation of the modified enzyme from the native Taka-amylase A by a DEAE-Sephacel column and led to the charge isomer pattern on gel electrophoresis performed according to the method of Hedrick and Smith. Moreover, the affinity gel electrophoresis showed that the modified enzyme completely lost the affinity for the substrate soluble starch, which indicated that the subsite modification occurred.  相似文献   

16.
In order to identify the essential reactive amino acid residues of 5-enolpyruvoylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosphate (N-phosphonomethylglycine), chemical modification studies with o-phthalaldehyde were undertaken. Incubation of the enzyme with the reagent resulted in a time-dependent loss of enzyme activity. The inactivation followed first-order and saturation kinetics with a Kinact of 25 microM and a maximum rate constant of 0.34 min-1. The inactivation was prevented by preincubation of the enzyme with the substrates shikimate 3-phosphate, 5-enolpyruvoylshikimate 3-phosphate, or by a combination of shikimate 3-phosphate plus glyphosate, but not by phosphoenolpyruvate or glyphosate alone. Absorbance and fluorescence spectra studies indicate that complete inactivation of the enzyme resulted from the formation of two isoindole derivatives per molecule of enzyme. Tryptic mapping of the enzyme modified in the absence of shikimate 3-phosphate and glyphosate resulted in the isolation of two peptides which were not found for the enzyme modified in the presence of shikimate 3-phosphate and glyphosate. Analyses of these two peptides indicate that Lys-22 and Lys-340 were the modified sites. The amino acid sequences around these residues are conserved in bacterial, fungal, as well as plant enzymes, suggesting that these regions may constitute part of the enzyme active site.  相似文献   

17.
The spinach ribulose 1,5-bisphosphate carboxylase/oxygenase was labelled with o-phthalaldehyde, which forms a stable fluorescent isoindole adduct at the active site. The fluorescence behaviour of the labelled enzyme after activation to different levels by Mg2+ was compared with that of a synthetic isoindole adduct of o-phthalaldehyde, namely 1-(hydroxyethylthio)-2-beta hydroxyethylisoindole in solvents of different pH and polarity. The results suggest that the microenvironment at the catalytically incompetent active site of the unactivated Rubisco is highly acidic (pH less than 2) in nature. The activation by Mg2+ results in the conformational change such that the effective pH at the active site increases to greater than 8. The polarity of the active site of the activated enzyme was found to be similar to that of a mixture of hexane and toluene.  相似文献   

18.
Yeast hexokinase is a homodimer consisting of two identical subunits. Yeast hexokinase was inactivated by 2-aminothiophenol at 25 degrees C (pH 9.1). The reaction followed pseudo-first-order kinetics until about 70% of the phosphotransferase activity was lost. About 0.65 mol of 2-aminothiophenol/mol of hexokinase was found to be bound after the 70% loss of the enzyme activity. Completely inactivated hexokinase showed a stoichiometry of about 1 mol of 2-aminothiophenol bound/mol of the enzyme. The evidence obtained from kinetic experiments, stoichiometry of the inactivation reaction and fluorescence emission measurements suggested site-site interaction (weak negative co-operativity) during the inactivation reaction. The approximate rate constants for the reversible binding of 2-aminothiophenol to the first subunit (KI) and for the rate of covalent bond formation with only one site occupied (k3) were 150 microM and 0.046 min-1 respectively. The inactivation reaction was pH-dependent. Dithiothreitol, 2-mercaptoethanol and cysteine restored the phosphotransferase activity of the hexokinase after inactivation by 2-aminothiophenol. Sugar substrates protected the enzyme from inactivation more than did the nucleotides. Thus it is concluded that the inactivation of the hexokinase by 2-aminothiophenol was a consequence of a covalent disulphide bond formation between the aminothiol and thiol function at or near the active site of the enzyme. Hexokinase that had been completely inactivated by 2-aminothiophenol reacted with o-phthalaldehyde. Fluorescence emission intensity of the incubation mixture containing 2-aminothiophenol-modified hexokinase and o-phthalaldehyde was one-half of that obtained from an incubation mixture containing hexokinase and o-phthalaldehyde under similar experimental conditions. The intensity and position of the fluorescence emission maximum of the 2-aminothiophenol-modified hexokinase were different from those of the native enzyme, indicating conformational change following modification. Whereas aliphatic aminothiols were completely ineffective, aromatic aminothiols were good inhibitors of the hexokinase. Cyclohexyl mercaptan weakly inhibited the enzyme. Inhibition of the hexokinase by heteroaromatic thiols was dependent on the nature of the heterocyclic ring and position of the thiol-thione equilibrium. The inhibitory function of a thiol is associated with the following structural characteristics: (a) the presence of an aromatic ring, (b) the presence of a free thiol function and (c) the presence of a free amino function in the close proximity of the thiol function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
zeta-Crystallin is a major protein in the lens of certain mammals. In guinea pigs it comprises 10% of the total lens protein, and it has been shown that a mutation in the zeta-crystallin gene is associated with autosomal dominant congenital cataract. As with several other lens crystallins of limited phylogenetic distribution, zeta-crystallin has been characterized as an "enzyme/crystallin" based on its ability to reduce catalytically the electron acceptor 2,6-dichlorophenolindophenol. We report here that certain naturally occurring quinones are good substrates for the enzymatic activity of zeta-crystallin. Among the various quinones tested, the orthoquinones 1,2-naphthoquinone and 9,10-phenanthrenequinone were the best substrates whereas menadione, ubiquinone, 9,10-anthraquinone, vitamins K1 and K2 were inactive as substrates. This quinone reductase activity was NADPH specific and exhibited typical Michaelis-Menten kinetics. Activity was sensitive to heat and sulfhydryl reagents but was very stable on freezing. Dicumarol (Ki = 1.3 x 10(-5) M) and nitrofurantoin (Ki = 1.4 x 10(-5) M) inhibited the activity competitively with respect to the electron acceptor, quinone. NADPH protected the enzyme against inactivation caused by heat, N-ethylmaleimide, or H2O2. Electron paramagnetic resonance spectroscopy of the reaction products showed formation of a semiquinone radical. The enzyme activity was associated with O2 consumption, generation of O2- and H2O2, and reduction of ferricytochrome c. These properties indicate that the enzyme acts through a one-electron transfer process. The substrate specificity, reaction characteristics, and physicochemical properties of zeta-crystallin demonstrate that it is an active NADPH:quinone oxidoreductase distinct from quinone reductases described previously.  相似文献   

20.
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号