首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolactin, having been shown to stimulate transcellular active and solvent drag-induced calcium transport in the duodenum of female rats, was postulated to improve duodenal calcium transport in estrogen-deficient rats. The aim of the present study was, therefore, to demonstrate the effects of long-term prolactin exposure produced by anterior pituitary (AP) transplantation on the duodenal calcium transport in young (9-week-old) and adult (22-week-old) ovariectomized rats. We found that ovariectomy did not alter the transcellular active duodenal calcium transport in young and adult rats fed normal calcium diet (1.0% w/w Ca) but decreased the solvent drag-induced duodenal calcium transport from 75.50 +/- 10.12 to 55.75 +/- 4.77 nmol.hr(-1).cm(-2) (P < 0.05) only in adult rats. Long-term prolactin exposure stimulated the transcellular active calcium transport in young and adult AP-grafted ovariectomized rats fed with normal calcium diet by more than 2-fold from 7.56 +/- 0.79 to 16.54 +/- 2.05 (P < 0.001) and 9.78 +/- 0.72 to 15.99 +/- 1.75 (P < 0.001) nmol.hr(-1).cm(-2), respectively. However, only the solvent drag-induced duodenal calcium transport in young rats was enhanced by prolactin from 95.51 +/- 10.64 to 163.20 +/- 18.03 nmol.hr(-1).cm(-2) (P < 0.001) whereas that in adult rats still showed a decreased flux from 75.50 +/- 10.12 to 47.77 +/- 5.42 nmol.hr(-1).cm(-2) (P < 0.05). Because oral calcium supplement has been widely used to improve calcium balance in estrogen-deficient animals, the effect of a high-calcium diet (2.0% w/w Ca) was also investigated. The results showed that stimulatory action of long-term prolactin on the transcellular active duodenal calcium transport in both young and adult rats was diminished after being fed a high-calcium diet. The same diet also abolished prolactin-enhanced solvent drag-induced duodenal calcium transport in young and further decreased that in adult AP-grafted ovariectomized rats. We concluded that the solvent drag-induced duodenal calcium transport in adult rats was decreased after ovariectomy. Long-term prolactin exposure stimulated the transcellular active duodenal calcium transport in both young and adult rats whereas enhancing the solvent drag-induced duodenal calcium transport only in young rats. Effects of prolactin were abolished by a high-calcium diet.  相似文献   

2.
Prolactin has been postulated to be a novel calcium-regulating hormone during pregnancy and lactation. It stimulates both passive and active duodenal calcium transport in several experimental models. Our study was performed on sexually mature female Wistar rats (200-250 g) to study the direct action of prolactin on calcium transport in the duodenum using the Ussing chamber technique. To evaluate the effect of prolactin on total calcium transport in the duodenum, we intraperitoneally injected rats with 0.4, 0.6, and 0.8 mg/kg prolactin. The total calcium transport was divided into voltage-dependent, solvent drag-induced, and transcellular active fluxes by applying short-circuit current and by mucosal glucose replacement with mannitol. The effect of prolactin on each flux was studied separately. Finally, to evaluate the direct action of prolactin on duodenal transcellular active flux, we directly exposed duodenal segments to prolactin that had been added to the serosal solution with or without calcium transport inhibitors. We found that 0.6 and 0.8 mg/kg prolactin ip significantly increased the total mucosa-to-serosa calcium flux from the control value (nmol x hr(-1) x cm(-2)) of 34.53+/-6.81 to 68.07+/-13.53 (P < 0.05) and 84.43+/-19.72 (P < 0.01), respectively. Prolactin also enhanced the solvent drag-induced calcium flux and transcellular active calcium flux, but not the voltage-dependent calcium flux. The duodenal segments directly exposed to 200, 400, and 800 ng/mL prolactin showed a significant increase in the transcellular active calcium absorption in a dose-dependent manner, i.e., from the control value (nmol x hr(-1) x cm(-2)) of 2.94+/-0.47 to 5.45+/-0.97 (P < 0.01), 8.09+/-0.52 (P < 0.001), and 18.42+/-2.92 (P < 0.001), respectively. Its direct action was inhibited by mucosal exposure to 50 microM lanthanum chloride, a calcium transporter protein competitor, and serosal exposure to 0.1 mM trifluoperazine, a Ca2+-ATPase inhibitor. These studies demonstrate that the duodenum is a target organ of prolactin, which enhances transcellular active calcium transport.  相似文献   

3.
Chronic metabolic acidosis results in a negative calcium balance as a result of bone resorption and renal calcium loss. However, reports on the changes in intestinal calcium transport have been controversial. The present investigation therefore aimed to study the effects of chronic metabolic acidosis induced by 1.5% NH(4)Cl administration on the three components of duodenal calcium transport, namely, solvent drag-induced, transcellular active, and passive paracellular components, in rats using an in vitro Ussing chamber technique. The relative mRNA expression of genes related to duodenal calcium transport was also determined. We found that 21-day chronic metabolic acidosis stimulated solvent drag-induced and transcellular active duodenal calcium transport but not passive paracellular calcium transport. Our results further demonstrated that an acute direct exposure to serosal acidic pH, in contrast, decreased solvent drag-induced calcium transport in a pH-dependent fashion but had no effect on transcellular active calcium transport. Neither the transepithelial resistance nor duodenal permeability to Na(+), Cl(-), and Ca(2+) via the passive paracellular pathway were altered by chronic metabolic acidosis, suggesting that widening of the tight junction and changes in the charge-selective property of the tight junction did not occur. Thus the enhanced duodenal calcium transport observed in chronic metabolic acidosis could have resulted from a long-term adaptation, possibly at the molecular level. RT-PCR study revealed that chronic metabolic acidosis significantly increased the relative mRNA expression of duodenal genes associated with solvent drag-induced transport, i.e., the beta(1)-subunit of Na(+)-K(+)-ATPase, zonula occludens-1, occludin, and claudin-3, and with transcellular active transport, i.e., transient receptor potential vanilloid family Ca(2+) channels 5 and 6 and plasma membrane Ca(2+)-ATPase isoform 1b. Total plasma calcium and free ionized calcium and magnesium concentrations were also increased, whereas serum parathyroid hormone and 1alpha,25-dihydroxyvitamin D(3) levels were not changed. The results indicated that 21-day chronic metabolic acidosis affected the calcium metabolism in rats partly through enhancing the mRNA expression of crucial duodenal genes involved in calcium absorption, thereby stimulating solvent drag-induced and transcellular active calcium transport in the duodenum.  相似文献   

4.
Prolactin has recently been shown to directly stimulate 2 components of the active duodenal calcium transport in female rats, i.e., solvent drag-induced and transcellular-active calcium transport. Since the basolateral Na(+)/K(+)- and Ca(2+)-ATPases, respectively, play important roles in these 2 transport mechanisms, the present study aimed to examine the direct actions of prolactin on the activities of both transporters in sexually mature female Wistar rats. The results showed that 200, 400, and 800 ng/mL prolactin produced a significant increase in the total ATPase activity of duodenal crude homogenate in a dose-dependent manner within 60 min (i.e., from a control value of 1.53 +/- 0.13 to 2.29 +/- 0.21 (p < 0.05), 2.68 +/- 0.19 (p < 0.01), and 3.92 +/- 0.33 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1), respectively). Activity of Na+/K+-ATPase was increased by 800 ng/mL prolactin from 0.17 +/- 0.03 to 1.18 +/- 0.29 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.01). Prolactin at doses of 400 and 600 ng/mL also significantly increased the activities of Ca(2+)-ATPase in crude homogenate from a control value of 0.84 +/- 0.03 to 1.75 +/- 0.29 (p < 0.05), and 2.30 +/- 0.37 (p < 0.001) micromol Pi x (mg protein)(-1) x min(-1). When the crude homogenate was purified for the basolateral membrane, the Na(+)/K(+)-ATPase activities were elevated 10-fold. In the purified homogenate, 800 ng/mL prolactin increased Na(+)/K(+)-ATPase activity from 1.79 +/- 0.38 to 2.63 +/- 0.44 micromol Pi x (mg protein)(-1) x min(-1) (p < 0.05), and Ca(2+)-ATPase activity from 0.08 +/- 0.14 to 2.03 +/- 0.23 micromol Pi x (mg protein)(-1) x min-1 (p < 0.001). Because the apical calcium entry was the first important step for the transcellular active calcium transport, the brush border calcium uptake was also investigated in this study. We found that, 8 min after being directly exposed to 800 ng/mL prolactin, the brush border calcium uptake into the duodenal epithelial cells was increased from 0.31 +/- 0.02 to 0.80 +/- 0.28 nmol x (mg protein)(-1) (p < 0.05). It was concluded that prolactin directly and rapidly enhanced the brush border calcium uptake as well as the activities of the basolateral Na(+)/K(+)- and Ca(2+)-ATPases in the duodenal epithelium of female rats. These findings explained the mechanisms by which prolactin stimulated duodenal active calcium absorption.  相似文献   

5.
Prolactin has been reported to stimulate intestinal calcium absorption in young and mature, but not aging rats. The present study was performed on suckling rats to elucidate the actions of endogenous prolactin on calcium absorption in various intestinal segments. Before measuring the calcium fluxes, 9-day-old rats were administered for 7 days with 0.9% NaCl, s.c. (control), 3 mg/kg bromocriptine, i.p., twice daily to abolish secretion of endogenous prolactin, or bromocriptine plus exogenous 2.5 mg/kg prolactin, s.c. Thereafter, the 16-day-old rats were experimented upon by instilling the 45Ca-containing solution into the intestinal segments. The results showed that, under a physiological condition, the jejunum had the highest rate of calcium absorption compared with other segments (1.4 +/- 0.35 micromol.h-1.cm-1, p < 0.05). The duodenum and ileum also manifested calcium absorption, whereas the colon showed calcium secretion. Lack of endogenous prolactin decreased lumen-to-plasma and net calcium fluxes in jejunum from 2.07 +/- 0.31 to 1.19 +/- 0.12 and 1.40 +/- 0.35 to 0.88 +/- 0.18 micromol.h-1.cm-1 (p < 0.05), respectively, and exogenous prolactin restored the jejunal calcium absorption to the control value. Endogenous prolactin also had an effect on the duodenum but, in this case, exogenous prolactin did not reverse the effect of bromocriptine. However, neither ileal nor colonic calcium fluxes were influenced by prolactin. Because luminal sodium concentration has been demonstrated to affect calcium absorption in mature rats, the effect of varying luminal sodium concentrations on calcium fluxes in suckling rats was evaluated. The jejunum was used due to its highest rate of calcium absorption. After filling the jejunal segments with 124 (control), 80, 40 mmol/L Na+-containing or Na+-free solution, increases in calcium absorption were found to be inversely related to luminal sodium concentrations in both control and bromocriptine-treated rats. The plasma concentration of 45Ca under luminal sodium free condition was also higher than that of the control condition (2.26% +/- 0.07% vs. 2.01% +/- 0.09% administered dose, p < 0.05). However, 3H-mannitol, a marker of the widening of tight junction that was introduced into the lumen, had a stable level in the plasma during an increase in plasma 45Ca, suggesting that the widening of tight junction was not required for enhanced calcium absorption. In conclusion, calcium absorption in suckling rats was of the highest rate in the jejunum where endogenous prolactin modulated calcium absorption without increasing the paracellular transport of mannitol.  相似文献   

6.
Prolactin is an important regulator of intestinal calcium transport   总被引:3,自引:0,他引:3  
Prolactin has been shown to stimulate intestinal calcium absorption, increase bone turnover, and reduce renal calcium excretion. The small intestine, which is the sole organ supplying new calcium to the body, intensely expresses mRNAs and proteins of prolactin receptors, especially in the duodenum and jejunum, indicating the intestine as a target tissue of prolactin. A number of investigations show that prolactin is able to stimulate the intestinal calcium transport both in vitro and in vivo, whereas bromocriptine, which inhibits pituitary prolactin secretion, antagonizes its actions. In female rats, acute and long-term exposure to high prolactin levels significantly enhances the (i) transcellular active, (ii) solvent drag-induced, and (iii) passive calcium transport occurring in the small intestine. These effects are seen not only in pregnant and lactating animals, but are also observed in non-pregnant and non-lactating animals. Interestingly, young animals are more responsive to prolactin than adults. Prolactin-enhanced calcium absorption gradually diminishes with age, thus suggesting it has an age-dependent mode of action. Although prolactin's effects on calcium absorption are not directly vitamin D-dependent; a certain level of circulating vitamin D may be required for the basal expression of genes related to calcium transport. The aforementioned body of evidence supports the hypothesis that prolactin acts as a regulator of calcium homeostasis by controlling the intestinal calcium absorption. Cellular and molecular signal transductions of prolactin in the enterocytes are largely unknown, however, and still require investigation.  相似文献   

7.
Elevated plasma levels of prolactin (PRL) have been reported in several physiological and pathological conditions, such as lactation, prolactinoma, and dopaminergic antipsychotic drug uses. Although PRL is a calcium-regulating hormone that stimulates intestinal calcium absorption in lactating rats, whether PRL is capable of stimulating calcium absorption in male rats has been elusive. Herein, the transepithelial calcium transport and electrical characteristics were determined in ex vivo duodenal tissues of male rats by Ussing chamber technique. We found that PRL receptors were abundantly present in the basolateral membrane of the duodenal epithelial cells. PRL (200–800 ng/mL) markedly increased the active duodenal calcium transport in a dose-dependent fashion without effect on the transepithelial resistance. The PRL-enhanced active duodenal calcium transport was completely abolished by L-type calcium channel blocker (nifedipine) as well as inhibitors of the major basolateral calcium transporters, namely plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger. Several intracellular mediators, such as JAK2, MEK, PI3K and Src kinase, were involved in the PRL-enhanced transcellular calcium transport. Moreover, PRL also stimulated the paracellular calcium transport in the duodenum of male rats in a PI3K-dependent manner. In conclusion, PRL appeared to be a calcium-regulating hormone in male rats by enhancing the L-type calcium channel-mediated transcellular and the paracellular passive duodenal calcium transport. This phenomenon could help restrict or alleviate negative calcium balance and osteoporosis that often accompany hyperprolactinemia in male patients.  相似文献   

8.
Prolactin (PRL) was previously demonstrated to rapidly enhance calcium absorption in rat duodenum and the intestine-like Caco-2 monolayer. However, its mechanism was not completely understood. Here, we investigated nongenomic effects of PRL on the transepithelial calcium transport and paracellular permselectivity in the Caco-2 monolayer by Ussing chamber technique. PRL increased the transcellular and paracellular calcium fluxes and paracellular calcium permeability within 60 min after exposure but decreased the transepithelial resistance of the monolayer. The effects of PRL could not be inhibited by RNA polymerase II inhibitor (5,6-dichloro-1-beta-D-ribobenzimidazole), confirming that PRL actions were nongenomic. Exposure to protein kinase C (PKC) or RhoA-associated coiled-coil forming kinase (ROCK) inhibitors (GF-109203X and Y-27632, respectively) abolished the stimulatory effect of PRL on transcellular calcium transport, whereas ROCK inhibitor, but not PKC inhibitor, diminished the PRL effect on paracellular calcium transport. Knockdown of the long isoform of PRL receptor (PRLR-L) also prevented the enhancement of calcium transport by PRL. In addition, PRL markedly increased paracellular sodium permeability and the permeability ratio of sodium to chloride, which are indicators of the paracellular charge-selective property and are known to be associated with the enhanced paracellular calcium transport. The permeability of other cations in the alkali metal series was also increased by PRL, and such increases were abolished by ROCK inhibitor. It could be concluded that PRL stimulated transepithelial calcium transport through PRLR-L and increased paracellular permeability to cations in the Caco-2 monolayer. These nongenomic actions of PRL were mediated by the PKC and ROCK signaling pathways.  相似文献   

9.
Prolactin (PRL) has been shown to stimulate intestinal calcium absorption but the mechanism was still unknown. This study aimed to investigate the mechanism and signaling pathway by which PRL enhanced calcium transport in the rat duodenum and Caco-2 monolayer. Both epithelia strongly expressed mRNAs and proteins of PRL receptors. Ussing chamber technique showed that the duodenal active calcium fluxes were increased by PRL in a dose-response manner with the maximal effective dose of 800 ng/ml. This response diminished after exposure to LY-294002, a phosphoinositide 3-kinase (PI3K) inhibitor. Caco-2 monolayer gave similar response to PRL with the maximal effective dose of 600 ng/ml. By nullifying the transepithelial potential difference, we showed that the voltage-dependent paracellular calcium transport did not contribute to the PRL-enhanced flux in Caco-2 monolayer. In contrast, the calcium gradient-dependent paracellular transport and calcium permeability were increased by PRL. Effects of PRL on Caco-2 monolayer were abolished by PI3K inhibitors (LY-294002 and wortmannin), but not by inhibitors of MEK (U-0126) or JAK2 (AG-490). To investigate whether the PRL-enhanced paracellular transport was linked to changes in the epithelial charge selectivity, the permeability ratio of sodium and chloride (P(Na)/P(Cl)) was determined. We found that PRL elevated the P(Na)/P(Cl) in both epithelia, and the effects were blocked by PI3K inhibitors. In conclusion, PRL directly and rapidly stimulated the active and passive calcium transport in the rat duodenum and Caco-2 monolayer via the nongenomic PI3K-signaling pathway. This PRL-enhanced paracellular calcium transport could have resulted from altered charge selectivity.  相似文献   

10.
Mechanisms of intestinal calcium absorption   总被引:10,自引:0,他引:10  
Calcium is absorbed in the mammalian small intestine by two general mechanisms: a transcellular active transport process, located largely in the duodenum and upper jejunum; and a paracellular, passive process that functions throughout the length of the intestine. The transcellular process involves three major steps: entry across the brush border, mediated by a molecular structure termed CaT1, intracellular diffusion, mediated largely by the cytosolic calcium-binding protein (calbindinD(9k) or CaBP); and extrusion, mediated largely by the CaATPase. Chyme travels down the intestinal lumen in approximately 3 h, spending only minutes in the duodenum, but over 2 h in the distal half of the small intestine. When calcium intake is low, transcellular calcium transport accounts for a substantial fraction of the absorbed calcium. When calcium intake is high, transcellular transport accounts for only a minor portion of the absorbed calcium, because of the short sojourn time and because CaT1 and CaBP, both rate-limiting, are downregulated when calcium intake is high. Biosynthesis of CaBP is fully and CaT1 function is approximately 90% vitamin D-dependent. At high calcium intakes CaT1 and CaBP are downregulated because 1,25(OH)(2)D(3), the active vitamin D metabolite, is downregulated.  相似文献   

11.
We investigated the acute effect of intraperitoneally administered prolactin on calcium and water transport in colon of sexually mature female Wistar rats using an in vivo perfusion technique. Test solution containing (in mM) NaCl, 100; KCl, 4.7; MgSO4, 1.2; CaCl2, 20; D-glucose, 11; sodium ferrocyanide (Na4Fe(CN)6), an index of net water transport, 20; and 0.7 (microCi 45CaCl2 (1 Ci = 37 GBq) was perfused througth the 8-cm colonic loop for 60 min at perfusion rates of 0.5 or 1.0 mL x min(-1). Calcium and water transport was also studied under a no flow condition to stimulate the condition often found in the colon by in vivo ligated colonic loop for 30 min. Control results showed no correlation between calcium transport and water flux. Flow of luminal solution at 0.5 and 1.0 mL x min(-1) was found to reverse net calcium absorption from 0.04+/-0.01 nmol x g(-1) dry weight x h(-1) to net calcium secretion of 0.04+/-0.04 and 0.9+/-0.02 nmol x g(-1) dry weight x h(-1), respectively. Neither 0.4, 0.6, nor 1.0 mg x kg(-1) prolactin had any effect on calcium fluxes in the colon. On the other hand, at a perfusion rate of 1 mL x min(-1), 0.4 mg x kg(-1) prolactin significantly decreased net water absorption from 3.86+/-0.90 to 0.88+/-0.64 mL x g(-1) dry weight x h(-1) (P < 0.001), and the higher doses of 0.6 and 1.0 mg x kg(-1) prolactin reversed net water absorption to net water secretion of 2.20+/-0.63 and 2.33+/-0.89 mL x g(-1) dry weight x h(-1), respectively (P < 0.001). The stimulatory effect of prolactin on water transport was completely abolished by reducing the perfusion rate from 1.0 mL x min(-1) to zero. The stimulatory effect of prolactin on water secretion at perfusion rate of 1.0 mL x min(-1) was also abolished when luminal [Na+] was reduced from 180 to 80 mM. We concluded that, unlike in the small intestine, calcium fluxes in the colon are not related to water transport and did not respond at all to prolactin. Water transport, on the other hand, was reversed from net absorption to secretion by prolactin. We propose that this prolactin-induced water secretion is probably mediated by recycling of luminal sodium in the vicinity of tight junctions.  相似文献   

12.
Recent investigation has shown that the liver-derived iron-regulating hormone, hepcidin, can potentiate intestinal calcium absorption in hemizygous β-globin knockout thalassemic (BKO) mice. Since the upregulation of Fe2+ and H+ cotransporter, divalent metal transporter (DMT)-1, has been shown to correlate with thalassemia-induced intestinal calcium absorption impairment, the inhibition of the apical Na+/H+ exchanger (NHE)-3 that is essential for cytoplasmic pH regulation and transepithelial sodium absorption was hypothesized to negatively affect hepcidin action. Herein, the positive effect of hepcidin on the duodenal calcium transport was evaluated using Ussing chamber technique. The results showed that BKO mice had lower absorptive surface area and duodenal calcium transport than wild-type mice. Besides, paracellular transport of zinc in BKO mice was compromised. Hepcidin administration completely restored calcium transport. Since this hepcidin action was totally abolished by inhibitors of the basolateral calcium transporters, Na+/Ca2+ exchanger (NCX1) and plasma membrane Ca2+-ATPase (PMCA1b), the enhanced calcium flux potentially occurred through the transcellular pathway rather than paracellular pathway. Interestingly, the selective NHE3 inhibitor, 100 nM tenapanor, markedly inhibited hepcidin-enhanced calcium transport. Accordingly, hepcidin is one of the promising therapeutic agents for calcium malabsorption in β-thalassemia. It mainly stimulates the transcellular calcium transport across the duodenal epithelium in an NHE3-dependent manner.  相似文献   

13.
The aim of present work was to study the effect of oral aluminium (Al) overload on intestinal calcium (Ca) absorption in the critical stages of pregnancy and lactation of rats and to find out possible relationships with prolactin (PRL) and 17beta-estradiol (E2) circulating levels. Adult female Wistar rats were orally treated from day 1 of pregnancy with 0 (control), or 50 mg elemental Al (as chloride)/kg body weight per day. Ca transport was determined by everted duodenal sacs technique using 2 microCi of (45)CaCl(2) as flux marker (JCa(ms)). Al treatment reduced JCa(ms) either in late pregnancy (day 19) or in middle lactation (day 9 postpartum). Oral administration of bromocriptine (BrC), an inhibitor of PRL secretion, at dose of 10 mg/kg body weight given 18 h before JCa(ms) measurements were done, produced a significant decrease in the inhibitory effect of Al on JCa(ms), expressed as percent of control, at day 9 of nursing (vehicle: 51+/-7%, BrC: 28+/-4%, P <0.05). A positive correlation between Al effects on JCa(ms) and the physiological variations of E2 serum levels along pregnancy and lactation in BrC-treated rats was also found (r(2)=0.277, P =0.001). We conclude Al could reduce transcellular Ca absorption in the duodenum by interfering with physiological mechanisms of Ca transport partially mediated by serum level increments of E2 and PRL, observed in late pregnancy and mainly during middle lactation of rats.  相似文献   

14.
The current studies were designed to characterize calcium transport by intestinal brush border membrane in the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. The biochemical and functional purity of the intestinal brush border membranes in SHR and WKY rats was validated by marker enzymes and the ability to transiently transport D-glucose in the presence of Na+ gradient. Calcium transport into duodenal and jejunal vesicles represented a minor binding component and transmembrane movement as evident by initial rate studies, A23187 studies, and lanthanum displacement experiments. Initial rate and time course of calcium uptake was lower in SHR compared with WKY rats. Kinetic analysis of calcium uptake by the jejunum (total uptake minus binding component) showed a Vmax of 6.98 +/- 0.2 and 1.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.76 +/- 0.04 and 0.87 +/- 0.1 mM for WKY rats and SHR, respectively. Similar kinetic analysis of calcium uptake by the duodenal segments showed a Vmax of 10.3 +/- 0.8 and 2.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.01). Km values were 0.7 +/- 0.2 and 0.3 +/- 0.06 mM (P greater than 0.05). Vmax of calcium uptake in the 2-week-old rats (prehypertensive period) was 6.0 +/- 0.3 and 3.53 +/- 0.3 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.60 +/- 0.07 and 0.5 +/- 0.01 mM, respectively. These results suggest that calcium binding and uptake by duodenal and jejunal intestinal brush border membranes of SHR is significantly decreased compared with WKY rats. The decrease in transmembrane calcium uptake is secondary to decrease in Vmax and is present before the appearance of hypertension, implying a genetically determined defect in calcium uptake in intestinal brush border membranes of the SHR.  相似文献   

15.
Intestinal cells were isolated by a combination of mechanical and enzymatic means, and their calcium uptake was assayed by a rapid filtration procedure. Calcium uptake was a time- and concentration-dependent process that was markedly elevated at 25 and 37°C, as compared to 0°C. Cells isolated from rat duodenum exhibited higher uptakes than cells from jejunum, which in turn took up more calcium than cells from the ileurn. Duodenal cells from vitamin D-deficient animals took up less calcium than cells from vitamin D-replete cells. In vivo vitamin D repletion with 1,25-dihydroxyvitamin D3 raised calcium uptake by duodenal cells from treated animals toward that of cells from replete rats. Furthermore, calcium uptake by duodenal cells from vitamin D-deficient animals approximated that of ileal cells from replete rats. These findings with isolated cells parallel prior findings of tissue calcium transport and suggest that cellular calcium uptake may be related to the saturable component of intestinal calcium absorption. Isolated intestinal cells may therefore constitute one experimental model for the study of transcellular calcium transport.  相似文献   

16.
Somatostatin and intestinal calcium transport in the rat   总被引:1,自引:0,他引:1  
In intact rats we studied the influence of low doses of intravenously (i.v.) administered somatostatin (SRIF) on the net absorption and the bidirectional fluxes (lumen-to-plasma, LP; plasma-to-lumen, PL) of calcium in the duodenum, jejunum, ileum and caecum. In the duodenum SRIF inhibited the LP-flux and the net absorption of Ca significantly at infusion rates of 0.75 and 1.0 microgram SRIF . kg-1 . h-1. The PL-flux was not altered by any of the SRIF doses administered. In the other gut segments studied (jejunum, ileum, caecum) neither the net absorption nor the bidirectional Ca fluxes were changed by i.v. SRIF. It is concluded that SRIF in the plasma levels achieved in this study has an influence on the duodenal calcium absorption (CaA) of the rat; questions regarding the mechanisms of this action as well as the physiological significance of our findings are as yet unresolved.  相似文献   

17.
The effects of cytochalasin B on electrophysiological properties and sodium transport in rat jejunum in vitro are described. Stripped paired rat jejunal segments were maintained in Ussing chambers with Leibovitz's (L-15) tissue culture medium bubbled with 100% oxygen. L-15 medium contains galactose as the only sugar, and an assortment of amino acids and cofactors to nourish the tissue. Electrophysiological parameters of short-circuit current (Isc) and transepithelial potential difference could be maintained for up to 4 h in control tissues. Upon application of cytochalasin B (20 micrograms/ml), on the mucosal side, Isc and potential difference fell within 1 h from 1.93 +/- 0.12 to 1.09 +/- 0.14 (mean +/- S.E.) muequiv./cm2 per h and from 5 to 2.5 mV. Tissue resistance remained unchanged at approx. 110 omega X cm2 for up to 4 h. 22Na net flux was 4.1 +/- 0.9 muequiv./cm2 per h during the last control period and fell to zero within 1 h after cytochalasin B treatment. Transmission electron micrographs revealed no gross morphological changes at this dose. Absorptive junctional morphology was apparently not altered by cytochalasin B treatment, a finding which was consistent with the stable transepithelial electrical resistance observed during exposure to this drug. Active sodium transport processes coupled to hexose, amino acid, and chloride movements are all possible in L-15 medium. However, following exposure to 20 micrograms/ml cytochalasin B, all net sodium transport is completely inhibited. The data are consistent with the hypothesis of a common regulator for active sodium transport processes which is modulated through structural changes in cytoskeletal organization.  相似文献   

18.
Previous investigations showed that chronic metabolic acidosis (CMA) increased the paracellular permeability of ion and neutral hydrophilic molecules in the duodenum of rats and small intestinal-like cell lines. Since proteins of the claudin family have been known to regulate the paracellular transport in several epithelia, an increase in the paracellular permeability during CMA may have resulted from changes in the pattern of claudin expression. The present study aimed to investigate the expression profile of 22 claudins in the duodenum of female Sprague-Dawley rats given 1.5% NH(4)Cl for 21 days to induce CMA. Arterial blood gas analysis revealed plasma pH values of 7.40 in normal rats and 7.31 in acidotic rats. Blood chemistry showed increases in the total plasma calcium, free-ionized calcium and magnesium, indicating a typical adaptive response of animals to CMA. RT-PCR demonstrated mRNA expressions of claudin-1 to -12, -14, -15, -17 to -20, -22 and -23 in duodenum of normal rats. Claudin-16 was not expressed in normal duodenum, but was strongly expressed in the kidney. Claudin-13 expression was seen only in the cecum, colon, liver and kidney of mice. After 21-day CMA, mRNA expressions of claudin-2, -3, -6, -8, -11, -12, -14, -19 and -22 were significantly enhanced, whereas expressions of other claudins were not changed. Confocal laser-scanning microscopy demonstrated that duodenal enterocytes of normal rats expressed claudin-3 protein on the paracellular membrane. The distribution of claudin-3 protein along the paracellular membrane was markedly increased in CMA, especially near the apical surface. Our results, therefore, provided novel evidence that 21-day CMA markedly altered claudin profile in the duodenum of rats by upregulating specific claudin expression.  相似文献   

19.
The intestinal permeability of hexarelin and EP 51389, two growth hormone releasing hexa- and tri- peptide analogues, was assessed in vitro with side-by-side diffusion chambers in the apical-to-basolateral (AP-to-BL) and in the basolateral-to-apical (BL-to-AP) direction using excised rat jejunal segments. The effect of EP 51389 on P-glycoprotein (P-gp) was evaluated by rhodamine 123 accumulation on monolayers of CH(R)C5 cells with increasing concentrations of EP 51389. Hexarelin and EP 51389 permeability were found to be < 1%. Permeability coefficients (P(app)) were 18.87 +/- 2.86 (x10(-7) cm/s) and 5.87 +/- 0.45 (x10(-7) cm/s) for hexarelin and EP 51389, respectively. Bidirectional studies revealed that hexarelin transport was similar in both directions. EDTA did not influence hexarelin permeability. Permeability was predominantly secretory for EP 51389 as P(app) in the BL-to-AP direction [32.56 +/- 6.11 (x10(-7) cm/s)] was greater than AP-to-BL. Confirming involvement of a secretory transport system, chlorpromazine inhibited EP 51389 transport across the jejunum. EP 51389 inhibited P-gp in a dose dependent manner resulting in the intracellular accumulation of rhodamine in CH(R)C5 cells. These results suggest that: 1) the intestinal permeability of hexarelin and EP 51389 is poor; 2) the passage of hexarelin is mainly via a transcellular passive pathway since the contribution of paracellular permeability to the overall permeability is rather low; 3) P-gp may act as a potential barrier for the intestinal absorption of EP 51389.  相似文献   

20.
Epithelial transport and barrier function in occludin-deficient mice   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: This study aimed at functional characterization of the tight junction protein occludin using the occludin-deficient mouse model. METHODS: Epithelial transport and barrier functions were characterized in Ussing chambers. Impedance analysis revealed the ionic permeability of the epithelium (Re, epithelial resistance). Conductance scanning differentiated transcellular (Gc) and tight junctional conductance (Gtj). The pH-stat technique quantified gastric acid secretion. RESULTS: In occludin+/+ mice, Re was 23+/-5 Omega cm2 in jejunum, 66+/-5 Omega cm2 in distal colon and 33+/-6 Omega cm2 in gastric corpus and was not altered in heterozygotic occludin+/- or homozygotic occludin-/- mice. Additionally, [3H]mannitol fluxes were unaltered. In the control colon, Gc and Gtj were 7.6+/-1.0 and 0.3+/-0.1 mS/cm2 and not different in occludin deficiency. Epithelial resistance after mechanical perturbation or EGTA exposition (low calcium switch) was not more affected in occludin-/- mice than in control. Barrier function was measured in the urinary bladder, a tight epithelium, and in the stomach. Control Rt was 5.8+/-0.8 kOmega cm2 in urinary bladder and 33+/-6 Omega cm2 in stomach and not altered in occludin-/- mice. In gastric corpus mucosa, the glandular structure exhibited a complete loss of parietal cells and mucus cell hyperplasia, as a result of which acid secretion was virtually abolished in occludin-/- mice. CONCLUSION: Epithelial barrier characterization in occludin-deficiency points against an essential barrier function of occludin within the tight junction strands or to a substitutional redundancy of single tight junction molecules like occludin. A dramatic change in gastric morphology and secretory function indicates that occludin is involved in gastric epithelial differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号