首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two genera of anaerobic bacteria that are known to respire with chlorinated ethenes, were detected through cloning of bacterial 16S rRNA genes. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments after starvation and subsequent reamendment of culture with 1,2-DCA showed that the Dehalobacter sp. grew during the dichloroelimination of 1,2-DCA to ethene, implicating this organism in degradation of 1,2-DCA in these cultures. Species-specific real-time quantitative PCR was further used to monitor proliferation of Dehalobacter and Dehalococcoides during the degradation of chlorinated ethanes and showed that in fact both microorganisms grew simultaneously during the degradation of 1,2-DCA. Conversely, Dehalobacter grew during the dichloroelimination of 1,1,2-TCA to vinyl chloride (VC) but not during the subsequent reductive dechlorination of VC to ethene, whereas Dehalococcoides grew only during the reductive dechlorination of VC but not during the dichloroelimination of 1,1,2-TCA. This demonstrated that in mixed cultures containing multiple dechlorinating microorganisms, these organisms can have either competitive or complementary dechlorination activities, depending on the chloro-organic substrate.  相似文献   

2.
3.
Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two genera of anaerobic bacteria that are known to respire with chlorinated ethenes, were detected through cloning of bacterial 16S rRNA genes. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments after starvation and subsequent reamendment of culture with 1,2-DCA showed that the Dehalobacter sp. grew during the dichloroelimination of 1,2-DCA to ethene, implicating this organism in degradation of 1,2-DCA in these cultures. Species-specific real-time quantitative PCR was further used to monitor proliferation of Dehalobacter and Dehalococcoides during the degradation of chlorinated ethanes and showed that in fact both microorganisms grew simultaneously during the degradation of 1,2-DCA. Conversely, Dehalobacter grew during the dichloroelimination of 1,1,2-TCA to vinyl chloride (VC) but not during the subsequent reductive dechlorination of VC to ethene, whereas Dehalococcoides grew only during the reductive dechlorination of VC but not during the dichloroelimination of 1,1,2-TCA. This demonstrated that in mixed cultures containing multiple dechlorinating microorganisms, these organisms can have either competitive or complementary dechlorination activities, depending on the chloro-organic substrate.  相似文献   

4.
Methylocystis strain SB2, a facultative methanotroph capable of growth on multi-carbon compounds, was screened for its ability to degrade the priority pollutants 1,2-dichloroethane (1,2-DCA), 1,1,2-trichloroethane (1,1,2-TCA), and 1,1-dichloroethylene (1,1-DCE), as well as cis-dichloroethylene (cis-DCE) when grown on methane or ethanol. Methylocystis strain SB2 degraded 1,2-DCA and 1,1,2-TCA when grown on either substrate and cis-DCE when grown on methane. Growth of Methylocystis strain SB2 on methane was inhibited in the presence of all compounds, while only 1,1-DCE and cis-DCE inhibited growth on ethanol. No degradation of any chlorinated hydrocarbon was observed in ethanol-grown cultures when particulate methane monooxygenase (pMMO) activity was inhibited with the addition of acetylene, indicating that competition for binding to the pMMO between the chlorinated hydrocarbons and methane limited both methanotrophic growth and pollutant degradation when this strain was grown on methane. Characterization of Methylocystis strain SB2 found no evidence of a high-affinity form of pMMO for methane, nor could this strain utilize 1,2-DCA or its putative oxidative products 2-chloroethanol or chloroactetic acid as sole growth substrates, suggesting that this strain lacks appropriate dehydrogenases for the conversion of 1,2-DCA to glyoxylate. As ethanol: (1) can be used as an alternative growth substrate for promoting pollutant degradation by Methylocystis strain SB2 as the pMMO is not required for its growth on ethanol and (2) has been used to enhance the mobility of chlorinated hydrocarbons in situ, it is proposed that ethanol can be used to enhance both pollutant transport and biodegradation by Methylocystis strain SB2.  相似文献   

5.
6.
1,1,1-Trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter proliferated during dechlorination. Dehalobacter growth was dechlorination dependent, whereas Desulfovibrio growth was dechlorination independent. Experiments were also performed to test whether MS could enhance TCE degradation in the presence of inhibiting levels of 1,1,1-TCA. Dechlorination of cis-dichloroethene (cDCE) and vinyl chloride (VC) in KB-1, a chloroethene-degrading culture used for bioaugmentation, was inhibited with 1,1,1-TCA present. When KB-1 and MS were coinoculated, degradation of cDCE and VC to ethene proceeded as soon as the 1,1,1-TCA was dechlorinated to 1,1-DCA by MS. This demonstrated the potential application of the MS and KB-1 cultures for cobioaugmentation of sites cocontaminated with 1,1,1-TCA and TCE.  相似文献   

7.
A reactive iron barrier in a contaminated aquifer with low pH was found to dechlorinate 1,2-dichloroethane (1,2-DCA) in situ. This chlorinated ethane is known to resist abiotic reduction by zero valent iron. Samples taken up-gradient and within the barrier were used to inoculate anaerobic batch cultures amended with various electron donors. Cultures inoculated with groundwater from within the reactive iron barrier reduced 1,2-DCA to ethene. The same effect could be achieved by simultaneously supplying hydrogen while neutralising pH. The presence of iron or hydrogen at neutral pH had negligible effects on 1,2-DCA reduction in cultures inoculated with groundwater sampled up-gradient of the barrier. Molecular microbial community characterisation revealed that Dehalobacter species were more abundant in groundwater sampled from within the barrier. These findings suggest reactive iron barriers represent a remediation technology for 1,2-DCA degradation acting through in situ recruitment of 1,2-DCA reducing bacteria such as Dehalobacter.  相似文献   

8.
1,2-Dichloroethane (1,2-DCA), a chlorinated aliphatic hydrocarbon, is a well-known groundwater contaminant. In this study, fractionation of stable carbon isotope values of 1,2-DCA during biodegradation was used as a novel reaction probe to provide information about the mechanism of 1,2-DCA biodegradation under both aerobic (O2-reducing) and anaerobic (NO3-reducing) conditions. Under O2-reducing conditions, an isotopic enrichment value (epsilon) of -25.8 +/- 1.1 per thousand (+/-95% confidence intervals) was measured for the enrichment culture. Under NO3-reducing conditions, an epsilon-value of -25.8 +/- 3.5 per thousand was measured. The microbial culture produced isotopic enrichment values (epsilon) that are not only large and reproducible, but also are the same whether O2 or NO3 was used as an electron acceptor. Combining data measured under both O2- and NO3-reducing conditions, an isotopic enrichment value (epsilon) of -25.8 +/- 1.6 per thousand is measured for the microbial culture during 1,2-DCA degradation. The epsilon-value can be converted into a kinetic isotope effect (KIE) value to relate the observed isotopic fractionation to the mechanism of degradation. This KIE value (1.05) is consistent with degradation via hydrolytic dehalogenation under both electron-accepting conditions. This study demonstrates the added value of compound-specific isotope analysis not only as a technique to verify the occurrence and extent of biodegradation in the field, but also as a natural reaction probe to provide insight into the enzymatic mechanism of contaminant degradation.  相似文献   

9.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

10.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.  相似文献   

11.
1,1,1-trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter proliferated during dechlorination. Dehalobacter growth was dechlorination dependent, whereas Desulfovibrio growth was dechlorination independent. Experiments were also performed to test whether MS could enhance TCE degradation in the presence of inhibiting levels of 1,1,1-TCA. Dechlorination of cis-dichloroethene (cDCE) and vinyl chloride (VC) in KB-1, a chloroethene-degrading culture used for bioaugmentation, was inhibited with 1,1,1-TCA present. When KB-1 and MS were coinoculated, degradation of cDCE and VC to ethene proceeded as soon as the 1,1,1-TCA was dechlorinated to 1,1-DCA by MS. This demonstrated the potential application of the MS and KB-1 cultures for cobioaugmentation of sites cocontaminated with 1,1,1-TCA and TCE.  相似文献   

12.
The anaerobic dehalogenation of organohalides is catalyzed by the reductive dehalogenase (RdhA) enzymes produced in phylogenetically diverse bacteria. These enzymes contain a cobamide cofactor at the active site and two iron-sulfur clusters. In this study, the tetrachloroethene (PCE) reductive dehalogenase (PceA) of the Gram-positive Desulfitobacterium hafniense strain Y51 was produced in a catalytically active form in the nondechlorinating, cobamide-producing bacterium Shimwellia blattae (ATCC 33430), a Gram-negative gammaproteobacterium. The formation of recombinant catalytically active PceA enzyme was significantly enhanced when its dedicated PceT chaperone was coproduced and when 5,6-dimethylbenzimidazole and hydroxocobalamin were added to the S. blattae cultures. The experiments were extended to D. hafniense DCB-2, a reductively dehalogenating bacterium harboring multiple rdhA genes. To elucidate the substrate spectrum of the rdhA3 gene product of this organism, the recombinant enzyme was tested for the conversion of different dichlorophenols (DCP) in crude extracts of an RdhA3-producing S. blattae strain. 3,5-DCP, 2,3-DCP, and 2,4-DCP, but not 2,6-DCP and 3,4-DCP, were reductively dechlorinated by the recombinant RdhA3. In addition, this enzyme dechlorinated PCE to trichloroethene at low rates.  相似文献   

13.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

14.
The biodegradation of chlorinated alkanes was studied under oxic conditions with the objective of identifying favorable and unfavorable intramolecular chlorination sequences with respect to the enzymes studied. Several dehalogenating bacterial strains were screened for their ability to degrade middle-chain polychlorinated alkanes as well as a commercial mixture. Of the organisms tested, the most promising was Pseudomonas sp. strain 273, which possesses an oxygenolytic dehalogenase. The effects of carbon chain length (C6–C16), halogen position, and overall chlorine content (14–61% w/w) were examined using both commercially available compounds and molecules synthesized in our laboratory. The effects of co-substrates, solvents, and inducing agents were also studied. The results with pure chlorinated alkanes showed that the relative positions of the chlorine atoms strongly influenced the total amount of dehalogenation achieved. The greatest dehalogenation yields were associated with terminally chlorinated alkanes. The α- and α,ω-chlorinated compounds yielded similar results. Vicinal chlorination had the most dramatic impact on degradation. When present on both ends or at the center of the molecule, no dehalogenation was detected. Although partial dehalogenation of 1,2-dichlorodecane was observed, it was likely due to a combination of β-oxidation and an abiotic mechanism. Cereclor S52 was appreciably dehalogenated in shake flasks only when 1,10-dichlorodecane was present as a co-substrate and after increasing the oil surface area through mechanical emulsification, demonstrating the importance of abiotic factors in degrading commercial polychlorinated alkane mixtures.  相似文献   

15.
Two strictly anaerobic bacterial strains were isolated from contaminated groundwater at a Superfund site located near Baton Rouge, LA, USA. These strains represent the first isolates reported to reductively dehalogenate 1,2,3-trichloropropane. Allyl chloride (3-chloro-1-propene), which is chemically unstable, was produced from 1,2,3-trichloropropane, and it was hydrolysed abiotically to allyl alcohol and also reacted with the sulfide- and cysteine-reducing agents in the medium to form various allyl sulfides. Both isolates also dehalogenated a variety of other vicinally chlorinated alkanes (1,2-dichloropropane, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane) via dichloroelimination reactions. A quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes indicated that both strains couple reductive dechlorination to cell growth. Growth was not observed in the absence of hydrogen (H2) as an electron donor and a polychlorinated alkane as an electron acceptor. Alkanes containing only a single chlorine substituent (1-chloropropane, 2-chloropropane), chlorinated alkenes (tetrachlorothene, trichlorothene, cis -dichloroethene, trans -dichloroethene, vinyl chloride) and chlorinated benzenes (1-chlorobenzene and 1,2-dichlorobenzene) were not dechlorinated. Phylogenetic analysis based on 16S rRNA gene sequence data showed these isolates to represent a new lineage within the Chloroflexi . Their closest previously cultured relatives are 'Dehalococcoides' strains, with 16S rRNA gene sequence similarities of only 90%.  相似文献   

16.
This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.  相似文献   

17.
Two rapidly growing propionibacteria that could reductively dechlorinate tetrachloroethylene (PCE) and cis-1,2-dichloroethylene (cis-DCE) to ethylene were isolated from environmental sediments. Metabolic characterization and partial sequence analysis of their 16S rRNA genes showed that the new isolates, designated as strains Propionibacterium sp. HK-1 and Propionibacterium sp. HK-3, did not match any known PCE- or cis-DCE-degrading bacteria. Both strains dechlorinated relatively high concentrations of PCE (0.3 mM) and cis-DCE (0.52 mM) under anaerobic conditions without accumulating toxic intermediates during incubation. Cell-free extracts of both strains catalyzed PCE and cis-DCE dechlorination; degradation was accelerated by the addition of various electron donors. PCE dehalogenase from strain HK-1 was mediated by a corrinoid protein, since the dehalogenase was inactivated by propyl iodide only after reduction by titanium citrate. The amounts of chloride ions (0.094 and 0.103 mM) released after PCE (0.026 mM) and cis-DCE (0.05 mM) dehalogenation using the cell-free enzyme extracts of both strains, HK-1 and HK-3, were stoichiometrically similar (91 and 100%), indicating that PCE and cis-DCE were fully dechlorinated. Radiotracer studies with [1,2-14C] PCE and [1,2-14C] cis-DCE indicated that ethylene was the terminal product; partial conversion to ethylene was observed. Various chlorinated aliphatic compounds (PCE, trichloroethylene, cis-DCE, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, and vinyl chloride) were degraded by cell-free extracts of strain HK-1.  相似文献   

18.
A rod shaped, gram positive, non sporulating Acetobacterium strain was isolated that dechlorinated 1,2-dichloroethane (1,2-DCA) to ethene at a dechlorination rate of up to 2 nmol Cl- min-1 mg-1 of protein in the exponential growth phase with formate (40 mM) as the substrate. Although with other growth substrates such as pyruvate, lactate, H2/CO2, and ethanol higher biomass productions were obtained,the dechlorination rate with these substrates was more than 10-fold lower compared with formate growing cells. Neither cell extracts nor autoclaved cells of the isolatedAcetobacterium strain mediated the dechlorination of 1,2-DCA at significant rates. The addition of 1,2-DCA to the media did not result in increased cell production. No significant differences in corrinoid concentrations could be measured in cells growing on several growth-substrates. However, these measurements indicated that differences in corrinoid structure might cause the different dechlorination activity. The Acetobacterium sp. strain gradually lost its dechlorination ability during about 10 transfers in pure culture, probably due to undefined nutritional requirements. 16S rDNA analysis of the isolate revealed a 99.7% similarity with Acetobacterium wieringae. However, the type strains of A. wieringae and A. woodii did not dechlorinate 1,2-DCA.  相似文献   

19.
1,2-Dichloropropane (1,2-D), a widespread groundwater contaminant, can be reductively dechlorinated to propene by anaerobic bacteria. To shed light on the populations involved in the detoxification process, a comprehensive 16S rRNA gene-based bacterial community analysis of two enrichment cultures derived from geographically distinct locations was performed. Analysis of terminal restriction fragments, amplicons obtained with dechlorinator-specific PCR primers, and enumeration with quantitative real-time PCR as well as screening clone libraries all implied that Dehalococcoides populations were involved in 1,2-D dechlorination in both enrichment cultures. Physiological traits (e.g., dechlorination in the presence of ampicillin and a requirement for hydrogen as the electron donor) supported the involvement of Dehalococcoides populations in the dechlorination process. These findings expand the spectrum of chloroorganic compounds used by Dehalococcoides species as growth-supporting electron acceptors. The combined molecular approach allowed a comparison between different 16S rRNA gene-based approaches for the detection of Dehalococcoides populations.  相似文献   

20.
The suspected carcinogenic solvent 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, an efficient reductive in situ detoxification technology for this compound is not known. Detoxification results of 1,2-DCA with the recently isolated anaerobic bacterium Desulfitobacterium dichloroeliminans strain DCA1 are presented. First, it was verified that strain DCA1 could compete for nutrients in the presence of fast-growing Enterococcus faecalis; the latter was observed in the enrichment culture from which strain DCA1 was isolated. Subsequently, lab-scale bioaugmentation of the strain to groundwater containing 40 mg 1,2-DCA/l indicated that the bacterium has strong metabolic activity under prevailing environmental conditions, converting the pollutant into ethene. During exponential growth, the maximum 1,2-DCA dechlorination rate exceeded 350 nmol chloride released per min per mg total bacterial protein. Growth and dechlorination within the community with autochthonous bacteria indicated a high competitive strength of strain DCA1. Interestingly this dechlorination process does not produce any toxic byproducts, such as vinyl chloride. Furthermore, complete groundwater detoxification happens within a short time-frame (days) and is robust in terms of bacterial competition, oxygen tolerance, high ionic strength, and pH range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号