首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth dynamics of an amphibian tissue   总被引:1,自引:0,他引:1  
By the “labeled mitoses” method of Quastler and Sherman and others, the cell cycle of the germinative zone cells of the bullfrog lens epithelium has been characterized. It has been shown that this cycle lasts approximately 83 days with the DNA synthetic phase enduring 100 hours and G2, 11 hours. G1 occupies over 90% of the total time. the duration of mitosis itself has not been precisely determined. the length of the synthetic phase was corroborated by double labeling with c14 and h3-thymidine. When the temperature is raised by 6°c, from 24° to 30° the cycle is compressed by 40%. When the nongerminative, central cells of bullfrog lens epithelium are activated (stimulated to undergo DNA synthesis and mitosis) by injury or through in vitro culture, the length of the cycle also appears to decrease. in the in vitro experiments the generation time, as judged by the period elapsing between two successive bursts of DNA synthesis involving the same cells, amounts to 177–190 hours at 24°c. by raising the temperature to 30°c the time from injury or isolation until the appearance of the first wave of mitosis is reduced by 20%.  相似文献   

2.
Near-ultraviolet and visible radiations increased the duration of the mitotic cycle in excised pea root meristems primarily by lengthening the duration of the pre-DNA synthetic period (G1). All radiations tested shortened the duration of the post-DNA synthetic period (G2). The most pronounced effects were exhibited by green radiation, which lengthened the duration of the cell cycle, G1, DNA synthesis (S), and mitosis (M), and shortened the duration of G2. Progression of cells arrested by starvation in G1 and G2 into DNA synthesis and mitosis was also affected by light treatments. Green radiation appeared to arrest a group of cells in DNA synthesis as well as in G1 and G2. Meristems receiving green and near-ultraviolet radiations exhibited the most rapid progression of G1 cells through S and G2.  相似文献   

3.
The cell cycle (nuclear division cycle) of a multinucleate green alga, Boergesenia forbesii (Harvey) Feldmann was studied using microspectrophotometry and BrdU incorporation techniques. Mitosis was observed frequently 1-4 h after the beginning of the light period, on a 16:8 h LD cycle at 25°C. Mitotic nuclei formed discrete patches. Other nuclei remained in the G1 period. The DNA synthetic phase (S phase) was estimated to last about 12 h from microspectrophotometric study using aphidicolin inhibition just before the S phase and release from it. The G2 period was estimated to be about 2 h, because a labeled prophase nucleus could be detected when the samples were labeled with BrdU continuously over 3 h. The incorporation pattern of BrdU changed through the S phase nucleus. In early S phase, BrdU staining was detected as many dots in the entire nucleus, while in late S phase, it was detected as several discrete regions along the nuclear membrane. Almost all nuclei in B. forbesii were in the G1 stage after nuclear division, and the nuclei in several patches of the cell simultaneously initiated DNA synthesis. Once the nuclei entered into S phase, these nuclei continued into G2 and mitosis. In other words, the cell cycle regulation of entrance into S phase from G1 is an important factor in the growth and morphogenesis in B. forbesii.  相似文献   

4.
Summary The nuclear cycle among several diverse genetic stocks of Zea mays root meristem cells was compared and it was found that there were no significant differences among the nuclear cycle durations and its component phases. The durations of various periods of their mitotic cycles were studied by autoradiography of cells pulse-labelled with tritiated thymidine (3H-TdR). The total nuclear cycle was 10 to 11.5 hours and mitosis was 0.81 to 1.34 hours at 25°C. The S period is the longest interval (50% of the total time) of the nuclear cycle; of the rest of the cycle, G2 is longer than G1 or mitosis among all stocks. The constancy of the nuclear cycle among several stocks was adduced as evidence for strict genetic control of the cycle. Furthermore, it is demonstrated the DNA synthesis period is not dependent upon the amount of DNA present.This study is based on a portion of the dissertation presented by the senior author to the Graduate School, The University of Western Ontario, London, Canada, in partial fulfillment of the requirement for the Ph. D. degree  相似文献   

5.
The duration of the different phases of the microtubule and chromosome cycles were estimated in the native diploid cell populations of Allium cepa L root meristems proliferating undisturbed, under steady state conditions, at the physiological temperature of 15°C. The cycles were coupled by considering their fitting in relation to the short process of nuclear envelope breakdown. In the cycle related to cytoplasmic division, the preprophase band which predicts the future position of the phragmoplast made its appearance, as a wide band, 16 mm before the G2 to prophase transition, ie it was only present during the final 5% of the total G2 timing (5 h 30 mm). The band became narrow only 6 mm after prophase had started and it was present in this form for the remaining prophase time (2 h 24 mm). Its disappearance occurred strictly coinciding with nuclear envelope breakdown, at the end of prophase. No microtubules related to cytoplasmic division were apparent until 9 mm after telophase had initiated. The two initial stages of phragmoplast formation which followed occupied, respectively, 27 mm and 54.5 mm of the 2-h long telophase. On the other hand, the third and last stage in phragmoplast formation covered both the final 35 mm of mitosis and the 6 initial mm of the G1 of the next interphase. A very short (less than 4 mm) stage of microtubular nucleation around the nuclear envelope took place immediately afterwards, before the cortical array of microtubules appeared. The microtubule cycle related to nuclear division started with the apparent activation of the future spindle poles 7.4 mm before prophase was over. The mitotic spindle developed in the 5.6 mm long prometaphase. The spindle functioned in metaphase for the 42 mm it lasted, half spindles being separated for the 37 mm anaphase occupied in these cells.  相似文献   

6.
Summary Mitotically synchronous plasmodia of the slime moldPhysarum polycephalum were subjected to brief exposures of either pure atmospheres of carbon dioxide or nitrogen gases or to pulsetreatments with respiratory poisons (sodium azide, sodium arsenate, or 2,4-dinitrophenol, DNP) at many different phases of the mitotic cycle to assess their effects on the mechanism(s) controlling the timing of mitosis. Plasmodia were fully viable after a pulse of CO2 lasting up to 90 minutes or after a N2-pulse of 30 minutes in duration. Upon return to normal aeration, all treated plasmodia entered a fully synchronous mitosis with a variable excess mitotic delay, which was dependent on the duration of the pulse and time of application in the mitotic cycle. Likewise, plasmodia exposed to 15-minute-pulses of a sublethal dose of sodium arsenate (0.1 mM), sodium azide 0.05 mM) and 2,4-DNP (0.2 mM) yield characteristic patterns of excess mitotic delay upon returnal to normal culture conditions. Two different types of phase response curves (PRC) were generated by these treatments. This suggests that at least two distinct respiratory-linked physiological mechanisms are involved in control of mitosis onset and regulation of mitotic timing inPhysarum.Electron microscope observations of CO2-treated plasmodia reveal the induction of intranuclear 40–60 nm diameter macrotubules at all stages of the G2 phase up to and including prometaphase. Both anoxia and sodium azide treatments are effective in macrotubule induction, and both reversibly disrupt the normal tubular cristae organization of mitochondria. In early G2, macrotubules polymerize in association with both the inner membrane of the nuclear envelope and the nucleolus, while the tubule-organizer region, TOR, serves as the only nucleating site for macrotubules in late G2 nuclei, coincident with the onset of mitosis and TOR formation.  相似文献   

7.
Cell cycle arrest in G1 in response to ionizing radiation or senescence is believed to be provoked by inactivation of G1 cyclin-cyclin-dependent kinases (Cdks) by the Cdk inhibitor p21Cip1/Waf1/Sdi1. We provide evidence that in addition to exerting negative control of the G1/S phase transition, p21 may play a role at the onset of mitosis. In nontransformed fibroblasts, p21 transiently reaccumulates in the nucleus near the G2/M-phase boundary, concomitant with cyclin B1 nuclear translocation, and associates with a fraction of cyclin A-Cdk and cyclin B1-Cdk complexes. Premitotic nuclear accumulation of cyclin B1 is not detectable in cells with low p21 levels, such as fibroblasts expressing the viral human papillomavirus type 16 E6 oncoprotein, which functionally inactivates p53, or in tumor-derived cells. Moreover, synchronized E6-expressing fibroblasts show accelerated entry into mitosis compared to wild-type cells and exhibit higher cyclin A- and cyclin B1-associated kinase activities. Finally, primary embryonic fibroblasts derived from p21−/− mice have significantly reduced numbers of premitotic cells with nuclear cyclin B1. These data suggest that p21 promotes a transient pause late in G2 that may contribute to the implementation of late cell cycle checkpoint controls.  相似文献   

8.
Summary The microspectrophotometric study of the amount of DNA in the course of the interphase of synchronous binucleate cells, experimentally induced in the roots of the onion (Allium cepa), at 30° C, showed that the rate of DNA synthesis does not appear to be constant throughout the interphase, being greater at the beginning and end of the S period and slower during the middle part of the period.We found that the G 1 period occupies from 0% at 10% of the cell cycle, the S period about 81% and G 2 period plus mitosis about 14%.Contrary to our expectations, highly significant differences were found in the DNA content of the two nuclei of more than 1% of the binucleate cells, which suggests that DNA synthesis may be asynchronous in the two nuclei within a common cytoplasm.  相似文献   

9.
The duration of the cell cycle and its component phases in cell cultures of Haplopappus gracilis was estimated by means of pulse labelling with tritiated thymidine and subsequent autoradiographic techniques. The total duration of the mitotic cycle was found to be 22.0 hours. The average durations of the following component phases were: the synthetic period (S) 6.4 hours, the postsynthetic period (G2) 4.86 hours, prophase (P) 0.64 hours, metaphase (M) 0.40 hours, anaphase + early telophase (AT) 0.36 hours, the presynthetic period (G1) 9.34 hours. The results indicate that G1 and G2 are the phases, which are most prolonged in populations of cultivated cells when compared to the same phases in root lip cells from the same species.  相似文献   

10.
Once per cell cycle replication is crucial for maintaining genome integrity. Geminin interacts with the licensing factor Cdt1 to prevent untimely replication and is controlled by APC/C-dependent cell cycle specific proteolysis during mitosis and in G1. We show here that human geminin, when expressed in human cells in culture under a constitutive promoter, is excluded from the nucleus during part of the G1 phase and at the transition from G0 to G1. The N-terminal 30 amino acids of geminin, which contain its destruction box, are essential for nuclear exclusion. In addition, 30 amino acids within the central domain of geminin are required for both nuclear exclusion and nuclear accumulation. Cdt1 overexpression targets geminin to the nucleus, while reducing Cdt1 levels by RNAi leads to the appearance of endogenous geminin in the cytoplasm. Our data propose a novel means of regulating the balance of Cdt1/geminin in human cells, at the level of the subcellular localization of geminin.  相似文献   

11.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

12.
Alan R. Gould 《Planta》1977,137(1):29-36
The effects of temperature on the cell cycle of Haplopappus gracilis suspension cultures were analysed by the fraction of labelled mitoses method. Sphase in these cultures shows a different temperature optimum as compared to optima derived for G2 and mitosis. G1 phase has a much lower Q10 than the other cell cycle phases and shows no temperature optimum between 22 and 34° C. These results are discussed in relation to a transition probability model of the cell cycle proposed by Smith and Martin (Proc. Natl. Acad. Sci. USA 70, 1263–1267, 1973), in which each cell has a time independent probability of initiating the transition into another round of DNA replication and division. The implications of such a model for cell cycle analysis are discussed and a tentative model for a probabilistic transition trigger is advanced.Abbreviations FLM Fraction of labelled mitoses - TB Total B-phase  相似文献   

13.
The time and duration of each phase of the premeiotic interphase were determined in microsporocytes of two clones (S and K clones) ofTrillium kamtschaticum. After collectionTrillium plants were stored at 3 C or 7 C prior to completion of premeiotic mitosis in archesporial cells. For autoradiography, cells were explanted in the presence of3H-thymidine to identify the interval of the premeiotic DNA synthesis. Approximate durations of the G1, S and G2 phases for the K clone stored at 3 C were estimated to be 12, 12 and 14 days, respectively. The interval of premeiotic development was markedly different between clones. A high degree of synchrony in meiotic development, which is usually observed within anthers up to late meiotic prophase, was confirmed at the S phase, suggesting that synchrony is established during the G1 interval.  相似文献   

14.
Mild abrasion of rat tracheal epithelium results in irreversible damage to the superficial cells and stimulates the viable basal cells to participate in a nearly synchronous wave of DNA synthesis and mitosis. For the growth population as a whole, DNA synthesis started at 14 hr after injury and persisted for 16 hr. The duration of S in individual cells was determined autoradiographically by identifying the time at which a second pulse of DNA precursor (14C-TdR) was no longer incorporated by cells labelled with 3H-TdR at the onset of S. S was found to be 8–9 hr long. It was also determined that cells entering S at later times synthesized DNA for the same 8–9 hr period. TG2 was calculated to be 21/2–31/2 hr by subtraction of Ts and 1/2TM from the period from onset of DNA synthesis to metaphase. By making a second denuding lesion adjacent to the first injury, the cells were stimulated through at least another period of S. At the peak of the second wave of DNA synthesis (50 hr after injury) 14C-TdR was present in the same cells which had incorporated 3H-TdR administered at the mid-point of the preceding synthetic phase. The 28-hr interval between these two peaks of synthesis is the measure of cell cycle duration for these regenerating tracheal epithelial cells.  相似文献   

15.
Summary HeLa cells in a monolayer culture were synchronized to S, G2 and mitotic phases by use of excess (2.5 mM) deoxythymidine double-block technique. The localizations of Ca++-activated adenosine triphosphatase (ATPase) at different phases of the cell cycle were studied using light and electron-microscopic histochemical techniques, and microphotometric comparisons of the densities of reaction products. Enzyme reaction product was always localized in the endoplasmic reticulum, nuclear membrane, mitochondria and Golgi apparatus, but there were qualitative and quantitative differences related to the phases of the cell cycle. In S phase the activity was mainly concentrated in a perinuclear area of the cytoplasm whereas in G2 and mitosis the activity was scattered throughout the cell. The total activity per cell was maximal in G2, was less in S phase and least in mitosis. Activity in the mitochondria and endoplasmic reticulum was distinctly less in mitosis than in other phases of the cell cycle. The mitochondrial ATPase differed from the ATPase at other sites in ion dependence and sensitivity to oligomycin. The results suggest that there may be several distinct ATPases in proliferating cells.  相似文献   

16.
When proliferating fission yeast cells are exposed to nitrogen starvation, they initiate conjugation and differentiate into ascospores. Cell cycle arrest in the G1-phase is one of the prerequisites for cell differentiation, because conjugation occurs only in the pre-Start G1-phase. The role of ste9+ in the cell cycle progression was investigated. Ste9 is a WD-repeat protein that is highly homologous to Hct1/Cdh1 and Fizzy-related. The ste9 mutants were sterile because they were defective in cell cycle arrest in the G1-phase upon starvation. Sterility was partially suppressed by the mutation in cig2 that encoded the major G1/S cyclin. Although cells lacking Ste9 function grow normally, the ste9 mutation was synthetically lethal with the wee1 mutation. In the double mutants of ste9 cdc10ts, cells arrested in G1-phase at the restrictive temperature, but the level of mitotic cyclin (Cdc13) did not decrease. In these cells, abortive mitosis occurred from the pre-Start G1-phase. Overexpression of Ste9 decreased the Cdc13 protein level and the H1-histone kinase activity. In these cells, mitosis was inhibited and an extra round of DNA replication occurred. Ste9 regulates G1 progression possibly by controlling the amount of the mitotic cyclin in the G1-phase.  相似文献   

17.
CELL POPULATION KINETICS OF EXCISED ROOTS OF PISUM SATIVUM   总被引:4,自引:2,他引:2       下载免费PDF全文
The cell population kinetics of excised, cultured pea roots was studied with the use of tritiated thymidine and colchicine to determine (1) the influence of excision, (2) the influence of sucrose concentration, (3) the average mitotic cycle duration, and (4) the duration of mitosis and the G1, S, and G2 periods of interphase.1 The results indicate that the process of excision causes a drop in the frequency of mitotic figures when performed either at the beginning of the culture period or after 100 hours in culture. This initial decrease in frequency of cell division is independent of sucrose concentration, but the subsequent rise in frequency of division, after 12 hours in culture, is dependent upon sucrose concentration. Two per cent sucrose maintains the shortest mitotic cycle duration. The use of colchicine indicated an average cycle duration of 20 hours, whereas the use of tritiated thymidine produced an average cycle duration of 17 hours.  相似文献   

18.
The present study was undertaken to determine whether endometrial cancer cell line HEC-1-A differ from nontransformed cells, in that the cAMP and protein kinase C pathways may enhance IGF-I effects in mitogenesis by acting at the G1 phase of the cell cycle instead of G0. Immunofluorescence staining of HEC-1-A cells using the proliferating cell nuclear antigen (PCNA) monoclonal antibody and flow cytometric analysis determined that HEC-1-A cells do not enter the G0 phase of the cell cycle when incubated in a serum-free medium. Approximately 51% of the cells were in G1, 12% were in S and 37% in G2 phase of the cell cycle prior to treatment. Forskolin and phorbol-12-myristate 13-acetate (PMA) were used to stimulate cAMP production and protein kinase C activity, respectively. IGF-I, forskolin and PMA each increased (P <0.01) [3H]-thymidine incorporation in a dose and time dependent manner. The interaction of forskolin and PMA with IGF-I was then determined. Cells preincubated with forskolin or PMA followed by incubation with IFG-I incorporated significantly more (P <0.01) [3H]-thymidine into DNA than controls or any treatment alone. It is concluded that forskolin and, to a lesser extent, PMA exert their effect at the G1 phase of the cycle to enhance IGF-I effects in cell proliferation.  相似文献   

19.
Lamins, major components of the nuclear lamina, undergo phosphorylation at multiple residues during cell cycle progression, but their detailed phosphorylation kinetics remain largely undetermined. Here, we examined changes in the phosphorylation of major phosphorylation residues (Thr14, Ser17, Ser385, Ser387, and Ser401) of lamin B2 and the homologous residues of lamin B1, A/C during the cell cycle using novel antibodies to the site-specific phosphorylation. The phosphorylation levels of these residues independently changed during the cell cycle. Thr14 and Ser17 were phosphorylated during G2/M phase to anaphase/telophase. Ser385 was persistently phosphorylated during mitosis to G1 phase, whereas Ser387 was phosphorylated discontinuously in prophase and G1 phase. Ser401 phosphorylation was enhanced in the G1/S boundary. Immunoprecipitation using the phospho-antibodies suggested that metaphase-phosphorylation at Thr14, Ser17, and Ser385 of lamins occurred simultaneously, whereas G1-phase phosphorylation at Ser385 and Ser387 occurred in distinct pools or with different timings. Additionally, we showed that lamin B2 phosphorylated at Ser17, but not Ser385, Ser387 and Ser401, was exclusively non-ionic detergent soluble, depolymerized forms in growing cells, implicating specific involvement of Ser17 phosphorylation in lamin depolymerization and nuclear envelope breakdown. These results suggest that the phosphorylations at different residues of lamins might play specific roles throughout the cell cycle.  相似文献   

20.
The duration of the cell generation, the chronology, and the pattern of chromosome duplication was studied in the bone marrow of Gallus domesticus. The duration of the phases of the cell cycle is: cell generation 17.5 hours, S period 9 hours. G2 period plus prophase stage 2.5 hours, G1 period 6 hours. Chromosome replication begins at many sites. During middle S it extends to the whole complement and finally finishes in small, late replicating regions of the macrochromosomes. Interchromosomal asynchrony of duplication at the initiation or at the end of the S period was not observed. Z-chromosomes begin and finish DNA synthesis synchronously with the other macrochromosomes. The W-chromosome in females is the last microchromosome to finish replication. However it ends DNA synthesis at about the same time as the macrochromosomes. Similarities and differences between chromosome replication in Aves and Mammalia are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号