首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.  相似文献   

2.
The core lipopolysaccharide (LPS) of Aeromonas hydrophila AH-3 and Aeromonas salmonicida A450 is characterized by the presence of the pentasaccharide α-d-GlcN-(1→7)-l-α-d-Hep-(1→2)-l-α-d-Hep-(1→3)-l-α-d-Hep-(1→5)-α-Kdo. Previously it has been suggested that the WahA protein is involved in the incorporation of GlcN residue to outer core LPS. The WahA protein contains two domains: a glycosyltransferase and a carbohydrate esterase. In this work we demonstrate that the independent expression of the WahA glycosyltransferase domain catalyzes the incorporation of GlcNAc from UDP-GlcNAc to the outer core LPS. Independent expression of the carbohydrate esterase domain leads to the deacetylation of the GlcNAc residue to GlcN. Thus, the WahA is the first described bifunctional glycosyltransferase enzyme involved in the biosynthesis of core LPS. By contrast in Enterobacteriaceae containing GlcN in their outer core LPS the two reactions are performed by two different enzymes.  相似文献   

3.
Arabinogalactan proteins (AGPs) are a family of plant cell surface proteoglycans and are considered to be involved in plant growth and development. Because AGPs are very complex molecules, glycoside hydrolases capable of degrading AGPs are powerful tools for analyses of the AGPs. We previously reported such enzymes from Streptomyces avermitilis. Recently, a β-l-arabinopyranosidase was purified from the culture supernatant of the bacterium, and its corresponding gene was identified. The primary structure of the protein revealed that the catalytic module was highly similar to that of glycoside hydrolase family 27 (GH27) α-d-galactosidases. The recombinant protein was successfully expressed as a secreted 64-kDa protein using a Streptomyces expression system. The specific activity toward p-nitrophenyl-β-l-arabinopyranoside was 18 μmol of arabinose/min/mg, which was 67 times higher than that toward p- nitrophenyl-α-d-galactopyranoside. The enzyme could remove 0.1 and 45% l-arabinose from gum arabic or larch arabinogalactan, respectively. X-ray crystallographic analysis reveals that the protein had a GH27 catalytic domain, an antiparallel β-domain containing Greek key motifs, another antiparallel β-domain forming a jellyroll structure, and a carbohydrate-binding module family 13 domain. Comparison of the structure of this protein with that of α-d-galactosidase showed a single amino acid substitution (aspartic acid to glutamic acid) in the catalytic pocket of β-l-arabinopyranosidase, and a space for the hydroxymethyl group on the C-5 carbon of d-galactose bound to α-galactosidase was changed in β-l-arabinopyranosidase. Mutagenesis study revealed that the residue is critical for modulating the enzyme activity. This is the first report in which β-l-arabinopyranosidase is classified as a new member of the GH27 family.Arabinogalactan proteins (AGPs)3 are a family of complex proteoglycans widely distributed in plants (1, 2). AGPs are also found in tree exudate gums and coniferous woods (3) and are characterized by the presence of large amounts of carbohydrate components rich in galactose (all the sugars in the present study are in the d-configuration unless otherwise specified) and l-arabinose and by protein components rich in hydroxyproline, serine, threonine, alanine, and glycine (4). Type II arabinogalactans and short oligosaccharides are the two types of carbohydrates attached to the AGP backbone. Type II arabinogalactans have β-1,3-linked galactosyl backbones in mono- or oligo-β-1,6-galactosyl and/or l-arabinosyl side chains (2, 5). l-Arabinose and lesser amounts of other auxiliary sugars such as glucuronic acid, l-rhamnose, and l-fucose are attached to the side chains primarily at nonreducing termini (2). Molecular and biochemical evidence indicates that AGPs have specific functions during root formation, promotion of somatic embryogenesis, and attraction of pollen tubes to the style (6). However, because many putative protein cores exist and the structures of the carbohydrate moieties are complex, it has been difficult to differentiate one AGP species from another in plant tissues. This, in turn, has made it difficult to assign specific roles to individual AGPs. Despite significant physiological interest in AGPs, there are few studies on glycoside hydrolases that cleave the sugar moieties of these proteins. It is important to study such enzymes because hydrolytic enzymes specific to particular sugar residues or to a type of glycosidic linkage would be useful tools in the structural analysis of AGPs.So far, we have focused on the β-1,3-β-1,6-galactan backbone, which is the common structure of heterogeneous AGPs, to identify glycoside hydrolases acting on AGPs. Galactanases that hydrolyze β-1,3- or β-1,6-galactosyl linkages are useful tools because the enzymes hydrolyze AGPs and produce the constituent carbohydrate moieties of AGPs. We cloned two kinds of galactanases: exo-β-1,3-galactanase (EC 3.2.1.145) from Phanerochaete chrysosporium and endo-β-1,6-galactanase (EC 3.2.1.164) from Trichoderma viride, and demonstrated that the enzymes were novel and could be classified as glycoside hydrolase family 43 (GH43) and family 5 (GH5), respectively (79) (see the CAZy website). Genes encoding proteins similar to such enzymes were also identified in the Streptomyces avermitilis genome (10, 11).Because S. avermitilis has two different kinds of galactanases, we focused on finding novel AGP-degrading enzymes. We have cultivated the actinomycete using gum arabic as a carbon source, and isolated a novel β-l-arabinopyranosidase. To the best of our knowledge, the only report on β-l-arabinosidase (EC 3.2.1.88) has been on its purification from Cajanus indicus (12). The amino acid composition of the enzyme was investigated (13), but its sequence remains unknown. In this article, we cloned β-l-arabinopyranosidase from S. avermitilis (SaArap27A), analyzed its catalytic properties, and analyzed the crystal structure of the recombinant enzyme. The results clearly showed that this enzyme is β-l-arabinopyranosidase and is a novel member of the glycoside hydrolase family 27 (GH27). This is the first detailed report on β-l-arabinopyranosidase.  相似文献   

4.
Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of l- and d-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino acid analysis after acid hydrolysis, dinitrophenylation, enzymatic determination of the configuration of the chiral amino acids, and mass spectrometry. The high-performance liquid chromatography profile contained four main peaks, two monomers, and two dimers, plus a few minor peaks corresponding to anhydro forms. The first monomer was the d-lysine-containing disaccharide-tripeptide in which the d-Glu-d-Lys bond had the unusual γ→ϵ arrangement (GlcNAc-MurNAc-l-Ala-γ-d-Glu-ϵ-d-Lys). The second monomer was the conventional disaccharide-tetrapeptide (GlcNAc-MurNAc-l-Ala-γ-d-Glu-l-Lys-d-Ala). The first dimer contained a disaccharide-l-Ala as the acyl donor cross-linked to the α-amine of d-Lys in a tripeptide acceptor stem with the sequence of the first monomer. In the second dimer, donor and acceptor stems with the sequences of the second and first monomers, respectively, were connected by a d-Ala4-α-d-Lys3 cross-link. The cross-linking index was 10 with an average chain length of 30 disaccharide units. The structure of the peptidoglycan of T. maritima revealed for the first time the key role of d-Lys in peptidoglycan synthesis, both as a surrogate of l-Lys or meso-diaminopimelic acid at the third position of peptide stems and in the formation of novel cross-links of the l-Ala1(α→α)d-Lys3 and d-Ala4(α→α)d-Lys3 types.Peptidoglycan (or murein) is a giant macromolecule whose main function is the protection of the cytoplasmic membrane against the internal osmotic pressure. It is composed of alternating residues of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc)2 cross-linked by short peptides (1). The composition of the peptide stem in nascent peptidoglycan is l-Ala1-γ-d-Glu2-X3-d-Ala4-d-Ala5, where X is most often meso-diaminopimelic acid (meso-A2pm) or l-lysine in Gram-negative and Gram-positive species, respectively (2, 3). In the mature macromolecule, the last d-Ala residue is removed. Cross-linking of the glycan chains generally occurs between the carboxyl group of d-Ala at position 4 of a donor peptide stem and the side-chain amino group of the diamino acid at position 3 of an acceptor peptide stem (4→3 cross-links). Cross-linking is either direct or through a short peptide bridge such as pentaglycine in Staphylococcus aureus (2, 3). The enzymes for the formation of the 4→3 cross-links are active-site serine dd- transpeptidases that belong to the penicillin-binding protein (PBP) family and are the essential targets of β-lactam antibiotics in pathogenic bacteria (4). Catalysis involves the cleavage of the d-Ala4-d-Ala5 bond of a donor peptide stem and the formation of an amide bond between the carboxyl of d-Ala4 and the side chain amine at the third position of an acceptor stem. Transpeptidases of the ld specificity are active-site cysteine enzymes that were shown to act as surrogates of the PBPs in mutants of Enterococcus faecium resistant to β-lactam antibiotics (5). They cleave the X3-d-Ala4 bond of a donor stem peptide to form 3→3 cross-links. This alternate mode of cross-linking is usually marginal, although it has recently been shown to predominate in non-replicative “dormant” forms of Mycobacterium tuberculosis (6).Thermotoga maritima is a Gram-negative, extremely thermophilic bacterium isolated from geothermally heated sea floors by Huber et al. (7). A morphological characteristic is the presence of an outer sheath-like envelope called “toga.” Although the organism has received considerable attention for its biotechnological potential, studies about its peptidoglycan are scarce (811), and in particular the fine structure of the macromolecule is still unknown. In their initial work, Huber et al. (7) showed that the composition of its peptidoglycan was unusual for a Gram-negative species, because it contained both isomers of lysine and no A2pm. Recently, we purified and studied the properties of T. maritima MurE (12); this enzyme is responsible for the addition of the amino acid residue at position 3 of the peptide stem (13, 14). We demonstrated that T. maritima MurE added in vitro l- and d-Lys to UDP-MurNAc-l-Ala-d-Glu. Although l-Lys was added in the usual way, yielding the conventional nucleotide UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys containing a d-Glu(γ→α)l-Lys amide bond, the d-isomer was added in an “upside-down” manner, yielding the novel nucleotide UDP-MurNAc-l-Ala-d-Glu(γ→ϵ)d-Lys. We also showed that the d-Lys-containing nucleotide was not a substrate for T. maritima MurF, the subsequent enzyme in the biosynthetic pathway, whereas this ligase catalyzed the addition of dipeptide d-Ala-d-Ala to the l-Lys-containing tripeptide, yielding the conventional UDP-MurNAc-pentapeptide (12).However, both the l-Lys-containing UDP-MurNAc-pentapeptide and d-Lys-containing UDP-MurNAc-tripeptide were used as substrates by T. maritima MraY with comparable efficiencies in vitro (12). This observation implies that the unusual d-Lys-containing peptide stems are likely to be translocated to the periplasmic face of the cytoplasmic membrane and to participate in peptidoglycan polymerization. Therefore, we have determined here the fine structure of T. maritima peptidoglycan and we have shown that l-Lys- and d-Lys-containing peptide stems are both present in the polymer, the latter being involved in the formation of two novel types of peptidoglycan cross-link.  相似文献   

5.
The transport of some sugars at the antiluminal face of renal cells was studied using teased tubules of flounder (Pseudopleuronectes americanus). The analytical procedure allowed the determination of both free and total (free plus phosphorylated) tissue sugars. The inulin space of the preparation was 0.333 ± 0.017 kg/kg wet wt (7 animals, 33 analyses). The nonmetabolizable α-methyl-D-glucoside entered the cells by a carrier-mediated (phloridzin-sensitive), ouabain-insensitive process. The steady-state tissue/medium ratio was systematically below that for diffusion equilibrium. D-Glucose was a poor inhibitor of α-methyl-glucoside transport, D-galactose was ineffective. The phloridzin-sensitive transport processes of 2-deoxy-D-glucose,D-galactose,and 2-deoxy-D-galactose were associated with considerable phosphorylation. Kinetic evidence suggested that these sugars were transported in free form and subsequently were phosphorylated. 2-Deoxy-D-glucose accumulated in the cells against a slight concentration gradient. This transport was greatly inhibited by D-glucose, whereas α-methyl-glucoside and also D-galactose and its 2-deoxy-derivative were ineffective. D-Galactose and 2-deoxy-D-galactose mutually competed for transport; D-glucose, 2-deoxy-D-glucose, and α-methyl-D-glucoside were ineffective. Studies using various sugars as inhibitors suggest the presence of three carrier-mediated pathways of sugar transport at the antiluminal cell face of the flounder renal tubule: the pathway of α-methyl-D-glucoside (not shared by D-glucose); the pathway commonly shared by 2-deoxy-D-glucose and D-glucose; the pathway shared by D-galactose and 2-deoxy-D-galactose.  相似文献   

6.
Several esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of S-(3-aminopropyl)-l-cysteine and the methyl ester of S-(4-aminobutyl)-N-toluene-p-sulphonyl-l-cysteine were synthesized. The kinetics of hydrolysis of these and esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of l-arginine, l-lysine, S-(2-aminoethyl)-l-cysteine and esters of γ-guanidino-l-α-toluene-p-sulphonamidobutyric acid and α-N-toluene-p-sulphonyl-l-homoarginine by α- and β-trypsin were compared. On the basis of values of the specificity constants (kcat./Km), the two enzymes display similar catalytic efficiency towards some substrates. In other cases α-trypsin is less efficient than β-trypsin. It is possible that α-trypsin possesses greater molecular flexibility than β-trypsin.  相似文献   

7.
The use of β-lactam antibiotics has led to the evolution and global spread of a variety of resistance mechanisms, including β-lactamases, a group of enzymes that degrade the β-lactam ring. The evolution of increased β-lactam resistance was studied by exposing independent lineages of Salmonella typhimurium to progressive increases in cephalosporin concentration. Each lineage carried a β-lactamase gene (blaTEM-1) that provided very low resistance. In most lineages, the initial response to selection was an amplification of the blaTEM-1 gene copy number. Amplification was followed in some lineages by mutations (envZ, cpxA, or nmpC) that reduced expression of the uptake functions, the OmpC, OmpD, and OmpF porins. The initial resistance provided by blaTEM-1 amplification allowed the population to expand sufficiently to realize rare secondary point mutations. Mathematical modeling showed that amplification often is likely to be the initial response because events that duplicate or further amplify a gene are much more frequent than point mutations. These models show the importance of the population size to appearance of later point mutations. Transient gene amplification is likely to be a common initial mechanism and an intermediate in stable adaptive improvement. If later point mutations (allowed by amplification) provide sufficient adaptive improvement, the amplification may be lost.THE extensive use of β-lactam antibiotics has led to the evolution and spread of many chromosomal-, plasmid-, and transposon-borne resistance mechanisms (Livermore 1995; Weldhagen 2004). Prominent among these mechanisms is a class of enzymes, β-lactamases, that hydrolyze the β-lactam ring (Ambler 1980; Poole 2004). TEM-1 β-lactamase, encoded by the blaTEM-1 gene, hydrolyzes both penicillins and early cephalosporins (Matagne et al. 1990). As bacteria developed resistance, stable extended-spectrum cephalosporins (ESCs) were introduced, leading to evolution of TEM sequence variants with improved ESC hydrolysis (Petrosino et al. 1998). Resistance to β-lactams can also result from mutations that reduce levels of outer membrane proteins involved in uptake, altered target proteins (penicillin-binding proteins) to reduce β-lactam binding, or increased expression of efflux pumps that export the antibiotics (Poole 2004; Martínez-Martínez 2008; Zapun et al. 2008).Resistance to β-lactam antibiotics is linearly correlated with the lactamase level over a large range (Nordström et al. 1972) and resistance to β-lactam antibiotics can be provided by increasing enzyme levels. An early illustration of this process is the finding that Escherichia coli can develop ampicillin resistance by amplifying its ampC gene (Edlund and Normark 1981). Similar amplification has been observed in both eubacteria and eukaryotes (Craven and Neidle 2007; Wong et al. 2007) in response to various selective pressures, including antibiotics (Andersson and Hughes 2009; Sandegren and Andersson 2009). In an unselected bacterial population, the frequency of cells with a duplication of any specific chromosomal region ranges between 10−2 and 10−5 depending on the region (Anderson and Roth 1981), whereas a point mutation in that gene is expected to be carried by perhaps 1 cell in 107–108 (Hudson et al. 2002). Thus, the rate of duplication formation is ∼10−5/cell/division and further increases ∼0.01/cell/division (Pettersson et al. 2008) while the base substitution rate is ∼10−10/cell/division/base pair (Hudson et al. 2002). Thus, it is apparent that variants with an increased level of any enzyme activity are more likely to owe the increase to a gene copy number change than to a point mutation. Furthermore, because of the high intrinsic instability of tandem amplifications, haploid segregants are expected to take over the population when the selection pressure is released (Pettersson et al. 2008).To examine the importance of gene amplification in bacterial adaptation to cephalosporins, several independent Salmonella typhimurium lineages carrying the blaTEM-1 gene were allowed to develop resistance to progressively increased concentrations of cephalothin (a first-generation cephalosporin) and cefaclor (a second-generation cephalosporin). As these lineages developed resistance to higher antibiotic levels, amplification of the blaTEM-1 gene was the primary and most common resistance mechanism, which in some cases was followed by acquisition of rare point mutations that provided stable resistance.  相似文献   

8.
α-l-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60°C and exhibited stability at pH values from 3 to 7 and at temperatures up to 60°C. The enzymes released arabinose from p-nitrophenyl-α-l-arabinofuranoside, O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, and arabinose-containing polysaccharides but not from O-β-d-xylopyranosyl-(1→2)-O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. α-l-Arabinofuranosidase I also released arabinose from O-β-d-xylopy-ranosyl-(1→4)-[O-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. However, α-l-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. α-l-Arabinofuranosidase I hydrolyzed all linkages that can occur between two α-l-arabinofuranosyl residues in the following order: (1→5) linkage > (1→3) linkage > (1→2) linkage. α-l-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1→5) linkage > (1→2) linkage > (1→3) linkage. α-l-Arabinofuranosidase I preferentially hydrolyzed the (1→5) linkage of branched arabinotrisaccharide. On the other hand, α-l-arabinofuranosidase II preferentially hydrolyzed the (1→3) linkage in the same substrate. α-l-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas α-l-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.Recently, it has been proven that l-arabinose selectively inhibits intestinal sucrase in a noncompetitive manner and reduces the glycemic response after sucrose ingestion in animals (33). Based on this observation, l-arabinose can be used as a physiologically functional sugar that inhibits sucrose digestion. Effective l-arabinose production is therefore important in the food industry. l-Arabinosyl residues are widely distributed in hemicelluloses, such as arabinan, arabinoxylan, gum arabic, and arabinogalactan, and the α-l-arabinofuranosidases (α-l-AFases) (EC 3.2.1.55) have proven to be essential tools for enzymatic degradation of hemicelluloses and structural studies of these compounds.α-l-AFases have been classified into two families of glycanases (families 51 and 54) on the basis of amino acid sequence similarities (11). The two families of α-l-AFases also differ in substrate specificity for arabinose-containing polysaccharides. Beldman et al. summarized the α-l-AFase classification based on substrate specificities (3). One group contains the Arafur A (family 51) enzymes, which exhibit very little or no activity with arabinose-containing polysaccharides. The other group contains the Arafur B (family 54) enzymes, which cleave arabinosyl side chains from polymers. However, this classification is too broad to define the substrate specificities of α-l-AFases. There have been many studies of the α-l-AFases (3, 12), especially the α-l-AFases of Aspergillus species (28, 1215, 17, 22, 23, 2832, 3639, 4143, 46). However, there have been only a few studies of the precise specificities of these α-l-AFases. In previous work, we elucidated the substrate specificities of α-l-AFases from Aspergillus niger 5-16 (17) and Bacillus subtilis 3-6 (16, 18), which should be classified in the Arafur A group and exhibit activity with arabinoxylooligosaccharides, synthetic methyl 2-O-, 3-O-, and 5-O-arabinofuranosyl-α-l-arabinofuranosides (arabinofuranobiosides) (20), and methyl 3,5-di-O-α-l-arabinofuranosyl-α-l-arabinofuranoside (arabinofuranotrioside) (19).In the present work, we purified two α-l-AFases from a culture filtrate of Aspergillus awamori IFO 4033 and determined the substrate specificities of these α-l-AFases by using arabinose-containing polysaccharides and the core oligosaccharides of arabinoxylan and arabinan.  相似文献   

9.
10.
11.
A high proportion of hybridomas, obtained from mice immunized with style extracts prepared from mature flowers of an ornamental tobacco, Nicotiana alata, secrete antibody to arabinogalactan protein (AGP). The specificity of the antibodies secreted by three cloned cell lines is primarily directed to β-d-galactopyranose and α-l-arabinofuranose; antibodies from two cell lines preferentially bind β-d-galactopyranose residues and antibodies from the other cell line preferentially bind α-l-arabinofuranose. As AGPs are components of most plant tissues and exudates, it is likely that attempts to raise monoclonal antibodies to other plant extracts will result in hybridomas producing antibodies to AGPs.  相似文献   

12.
The pathway of d-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198–6207). Here we report a comprehensive study of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following 13C-labeling patterns of proteinogenic amino acids after growth on [13C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that d-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate α-ketoglutarate, involving d-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and α-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal d-xylose degradation pathway that differs from the classical d-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to α-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus.d-Xylose, a constituent of the polymer xylan, is the major component of the hemicellulose plant cell wall material and thus one of the most abundant carbohydrates in nature. The utilization of d-xylose by microorganisms has been described in detail in bacteria and fungi, for which two different catabolic pathways have been reported. In many bacteria, such as Escherichia coli, Bacillus, and Lactobacillus species, xylose is converted by the activities of xylose isomerase and xylulose kinase to xylulose 5-phosphate as an intermediate, which is further degraded mainly by the pentose phosphate cycle or phosphoketolase pathway. Most fungi convert xylose to xylulose 5-phosphate via xylose reductase, xylitol dehydrogenase, and xylulose kinase. Xylulose 5-phosphate is also an intermediate of the most common l-arabinose degradation pathway in bacteria, e.g. of E. coli, via activities of isomerase, kinase, and epimerase (1).Recently, by genetic evidence, a third pathway of xylose degradation was proposed for the bacterium Caulobacter crescentus, in analogy to an alternative catabolic pathway of l-arabinose, reported for some bacteria, including species of Azospirillum, Pseudomonas, Rhizobium, Burkholderia, and Herbasprillum (2, 3). In these organisms l-arabinose is oxidatively degraded to α-ketoglutarate, an intermediate of the tricarboxylic acid cycle, via the activities of l-arabinose dehydrogenase, l-arabinolactonase, and two successive dehydration reactions forming 2-keto-3-deoxy-l-arabinoate and α-ketoglutarate semialdehyde; the latter compound is further oxidized to α-ketoglutarate via NADP+-specific α-ketoglutarate semialdehyde dehydrogenase (KGSADH).2 In a few Pseudomonas and Rhizobium species, a variant of this l-arabinose pathway was described involving aldolase cleavage of the intermediate 2-keto-3-deoxy-l-arabinoate to pyruvate and glycolaldehyde, rather than its dehydration and oxidation to α-ketoglutarate (4). Because of the presence of some analogous enzyme activities in xylose-grown cells of Azosprillum and Rhizobium, the oxidative pathway and its variant was also proposed as a catabolic pathway for d-xylose. Recent genetic analysis of Caulobacter crecentus indicates the presence of an oxidative pathway for d-xylose degradation to α-ketoglutarate. All genes encoding xylose dehydrogenase and putative lactonase, xylonate dehydratase, 2-keto-3-deoxylonate dehydratase, and KGSADH were found to be located on a xylose-inducible operon (5). With exception of xylose dehydrogenase, which has been partially characterized, the other postulated enzymes of the pathway have not been biochemically analyzed.The pathway of d-xylose degradation in the domain of archaea has not been studied so far. First analyses with the halophilic archaeon Haloarcula marismortui indicate that the initial step of d-xylose degradation involves a xylose-inducible xylose dehydrogenase (6) suggesting an oxidative pathway of xylose degradation to α-ketoglutarate, or to pyruvate and glycolaldehyde, in analogy to the proposed oxidative bacterial pentose degradation pathways. Recently, a detailed study of d-arabinose catabolism in the thermoacidophilic crenarchaeon Sulfolobus solfataricus was reported. d-Arabinose was found to be oxidized to α-ketoglutarate involving d-arabinose dehydrogenase, d-arabinoate dehydratase, 2-keto-3-deoxy-d-arabinoate dehydratase, and α-ketoglutarate semialdehyde dehydrogenase (3).In this study, we present a comprehensive analysis of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. This halophilic archaeon was chosen because it exerts several suitable properties for the analyses. For example, it can be cultivated on synthetic media with sugars, e.g. xylose, an advantage for in vivo labeling studies in growing cultures. Furthermore, a shotgun DNA microarray of H. volcanii is available (7) allowing the identification of xylose-inducible genes, and H. volcanii is one of the few archaea for which an efficient protocol was recently described to generate in-frame deletion mutants.Accordingly, the d-xylose degradation pathway was elucidated following in vivo labeling experiments with [13C]xylose, DNA microarray analyses, and the characterization of enzymes involved and their encoding genes. The functional involvement of genes and enzymes was proven by constructing corresponding in-frame deletion mutants and their analysis by selective growth experiments on xylose versus glucose. The data show that d-xylose was exclusively degraded to α-ketoglutarate involving xylose dehydrogenase, a novel xylonate dehydratase, 2-keto-3-deoxyxylonate dehydratase, and α-ketoglutarate semialdehyde dehydrogenase.  相似文献   

13.
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin''s cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′.  相似文献   

14.
According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm2 surface of sensory axons of the walking leg of lobster is 1.2 x 10-3 µM/hr. (σ = ± 0.3 x 10-3; SE = 0.17 x 10-3); the corresponding value for the motor axons isslightly higher: 1.93 x 10-3 µM/hr. (σ = ± 0.41 x 10-3; SE = ± 0.14 x 10-3). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 µM/hr. (σ = ± 73.5; SE = ± 32.6) versus 111.6 µM/hr. (σ = ± 28.3; SE = ± 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10-4 µM/mm2/hr. (σ = ± 0.96 x 10-4; SE = ± 0.4 x 10-4). (3) The Ch-esterase activity per mm2 surface of squid giant axon is 9.5 x 10-5 µM/hr. (σ = ± 1.55 x 10-5; SE = ± 0.38 x 10-5). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10-5 µM/mm2/hr. (σ = ± 3.24 x 10-5; SE = ± 0.93 x 10-5). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm2 per impulse.  相似文献   

15.
16.
17.
18.
Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on β-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of β-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2′:2,1′-β-D-Frup (diheterolevulosan II) and β-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2′:2,1′-β-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with β-D-Fruf and β-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).  相似文献   

19.
d-Serine is a physiological co-agonist of the N-methyl-d-aspartate receptor. It regulates excitatory neurotransmission, which is important for higher brain functions in vertebrates. In mammalian brains, d-amino acid oxidase degrades d-serine. However, we have found recently that in chicken brains the oxidase is not expressed and instead a d-serine dehydratase degrades d-serine. The primary structure of the enzyme shows significant similarities to those of metal-activated d-threonine aldolases, which are fold-type III pyridoxal 5′-phosphate (PLP)-dependent enzymes, suggesting that it is a novel class of d-serine dehydratase. In the present study, we characterized the chicken enzyme biochemically and also by x-ray crystallography. The enzyme activity on d-serine decreased 20-fold by EDTA treatment and recovered nearly completely by the addition of Zn2+. None of the reaction products that would be expected from side reactions of the PLP-d-serine Schiff base were detected during the >6000 catalytic cycles of dehydration, indicating high reaction specificity. We have determined the first crystal structure of the d-serine dehydratase at 1.9 Å resolution. In the active site pocket, a zinc ion that coordinates His347 and Cys349 is located near the PLP-Lys45 Schiff base. A theoretical model of the enzyme-d-serine complex suggested that the hydroxyl group of d-serine directly coordinates the zinc ion, and that the ϵ-NH2 group of Lys45 is a short distance from the substrate Cα atom. The α-proton abstraction from d-serine by Lys45 and the elimination of the hydroxyl group seem to occur with the assistance of the zinc ion, resulting in the strict reaction specificity.  相似文献   

20.
Tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines, is activated by phosphorylation-dependent binding to 14-3-3 proteins. The N-terminal domain of TH is also involved in interaction with lipid membranes. We investigated the binding of the N-terminal domain to its different partners, both in the unphosphorylated (TH-(1–43)) and Ser19-phosphorylated (THp-(1–43)) states by surface plasmon resonance. THp-(1–43) showed high affinity for 14-3-3 proteins (Kd ∼ 0.5 μm for 14-3-3γ and -ζ and 7 μm for 14-3-3η). The domains also bind to negatively charged membranes with intermediate affinity (concentration at half-maximal binding S0.5 = 25–58 μm (TH-(1–43)) and S0.5 = 135–475 μm (THp-(1–43)), depending on phospholipid composition) and concomitant formation of helical structure. 14-3-3γ showed a preferential binding to membranes, compared with 14-3-3ζ, both in chromaffin granules and with liposomes at neutral pH. The affinity of 14-3-3γ for negatively charged membranes (S0.5 = 1–9 μm) is much higher than the affinity of TH for the same membranes, compatible with the formation of a ternary complex between Ser19-phosphorylated TH, 14-3-3γ, and membranes. Our results shed light on interaction mechanisms that might be relevant for the modulation of the distribution of TH in the cytoplasm and membrane fractions and regulation of l-DOPA and dopamine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号