首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Myogenic terminal differentiation is a well-orchestrated process starting with permanent cell cycle exit followed by muscle-specific genetic program activation. Individual SWI/SNF components have been involved in muscle differentiation. Here, we show that the master myogenic differentiation factor MyoD interacts with more than one SWI/SNF subunit, including the catalytic subunit BRG1, BAF53a and the tumor suppressor BAF47/INI1. Downregulation of each of these SWI/SNF subunits inhibits skeletal muscle terminal differentiation but, interestingly, at different differentiation steps and extents. BAF53a downregulation inhibits myotube formation but not the expression of early muscle-specific genes. BRG1 or BAF47 downregulation disrupt both proliferation and differentiation genetic programs expression. Interestingly, BRG1 and BAF47 are part of the SWI/SNF remodeling complex as well as the N-CoR-1 repressor complex in proliferating myoblasts. However, our data show that, upon myogenic differentiation, BAF47 shifts in favor of N-CoR-1 complex. Finally, BRG1 and BAF47 are well-known tumor suppressors but, strikingly, only BAF47 seems essential in the myoblasts irreversible cell cycle exit. Together, our data unravel differential roles for SWI/SNF subunits in muscle differentiation, with BAF47 playing a dual role both in the permanent cell cycle exit and in the regulation of muscle-specific genes.  相似文献   

7.
8.
9.
10.
11.
ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation.  相似文献   

12.
13.
14.
15.
16.
By regulating the structure of chromatin, ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in the maintenance, transmission and expression of the eukaryotic genome. Although all known chromatin-remodeling complexes contain an ATPase as a central motor subunit, a number of distinct classes have been recognized. Recent studies have emphasized a more extensive functional diversification among closely related chromatin remodeling complexes than previously anticipated. Here, we discuss recent insights in the functional differences between two evolutionary conserved subclasses of SWI/SNF-related chromatin remodeling factors. One subfamily comprises yeast SWI/SNF, fly BAP and mammalian BAF, whereas the other subfamily includes yeast RSC, fly PBAP and mammalian PBAF. We review the subunit composition, conserved protein modules and biological functions of each of these subclasses of SWI/SNF remodelers. In particular, we will focus on the roles of specific subunits in developmental gene control and human diseases. Recent findings suggest that functional diversification among SWI/SNF complexes allows the eukaryotic cell to fine-tune and integrate the execution of diverse biological programs involving the expression, maintenance and duplication of its genome.  相似文献   

17.
18.
The Brahma (Brm) complex of Drosophila melanogaster is a SWI/SNF-related chromatin remodeling complex required to correctly maintain proper states of gene expression through ATP-dependent effects on chromatin structure. The SWI/SNF complexes are comprised of 8-11 stable components, even though the SWI2/SNF2 (BRM, BRG1, hBRM) ATPase subunit alone is partially sufficient to carry out chromatin remodeling in vitro. The remaining subunits are required for stable complex assembly and/or proper promoter targeting in vivo. Our data reveals that SNR1 (SNF5-Related-1), a highly conserved subunit of the Brm complex, is required to restrict complex activity during the development of wing vein and intervein cells, illustrating a functional requirement for SNR1 in modifying whole complex activation functions. Specifically, we found that snr1 and brm exhibited opposite mutant phenotypes in the wing and differential misregulation of genes required for vein and intervein cell development, including rhomboid, decapentaplegic, thick veins, and blistered, suggesting possible regulatory targets for the Brm complex in vivo. Our genetic results suggest a novel mechanism for SWI/SNF-mediated gene repression that relies on the function of a 'core' subunit to block or shield BRM (SWI2/SNF2) activity in specific cells. The SNR1-mediated repression is dependent on cooperation with histone deacetylases (HDAC) and physical associations with NET, a localized vein repressor.  相似文献   

19.
SWI/SNF- and ISWI-based complexes have distinct yet overlapping chromatin-remodeling activities in vitro and perform different roles in vivo. This leads to the hypothesis that the distinct remodeling functions of these complexes are specifically required for distinct biological tasks. By creating and characterizing chimeric proteins of BRG1 and SNF2h, the motor proteins of human SWI/SNF- and ISWI-based complexes, respectively, we found that a region that includes the ATPase domain specifies the outcome of the remodeling reaction in vitro. A chimeric protein based on BRG1 but containing the SNF2h ATPase domain formed an intact SWI/SNF complex that remodeled like SNF2h. This altered-function complex was active for remodeling and could stimulate expression from some, but not all, SWI/SNF responsive promoters in vivo. Thus, we were able to separate domains of BRG1 responsible for function from those responsible for SWI/SNF complex formation and demonstrate that remodeling functions are not interchangeable in vivo.  相似文献   

20.
Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence studies revealed a punctate nuclear labeling pattern that was excluded from the nucleoli and from regions of condensed chromatin. Dual labeling failed to reveal significant colocalization of BRG1 or hBRM proteins with RNA polymerase II or with nuclear speckles involved in splicing. Chromatin fractionation experiments showed that both soluble and insoluble active chromatin are enriched in the hSWI/SNF proteins as compared with bulk chromatin. hSWI/SNF proteins were also found to be associated with the nuclear matrix or nuclear scaffold, suggesting that a fraction of the hSWI/SNF complex could be involved in the chromatin organization properties associated with matrix attachment regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号