首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to propylene oxide was determined previously by the degree of alkylation of hemoglobin measured on the histidine residue as N-3-(2-hydroxypropyl) histidine, using blood samples from 8 propylene oxide-exposed employees and 13 unexposed referents. Mononuclear leukocytes isolated from the same blood samples were used to quantify DNA repair proficiency following an in vitro challenge with the carcinogen, N-acetoxy-2-acetylamino-fluorene. Decreases in the DNA repair proficiency index correlated significantly to in vivo exposure levels to propylene oxide (r = –0.64, p <0.03). These data suggest a possible short-term biological assay for monitoring the in vivo genotoxic effects of propylene oxide exposure in the human population.Abbreviations EO ethylene oxide - NA-AAF N-acetoxy-2-acetylaminofluorene - HOPrHIS N-3-(2-hydroxypropyl) histidine - PO propylene oxide - UDS unscheduled DNA synthesis  相似文献   

2.
Summary Abnormalities in DNA metabolism have been found in third-instar females of Drosophila melanogaster that are heteroallelic or homoallelic for X-chromosomal giant (gt) mutations. Analysis of DNA metabolism in larval brain ganglia was carried out using alkaline sucrose gradient centrifugation, incorporation assays and a neutral filter elution assay. These analyses show that gt stocks synthesize DNA of a reduced molecular weight, have an unusually high frequency of spontaneous single and doublestrand breaks, and exhibit a reduction in the normal inhibition of DNA synthesis following treatment with UV and the carcinogen AAAF. These phenomena are not associated with a defect in the repair of X-ray induced DNA breaks nor are they accompanied by any alterations in chromosome stability. Analysis of homozygous 1(2)gl larvae also reveal that these phenomena are specific to the gt locus and are thus not attributable solely to an extended developmental program. These findings strengthen the suggestion that the genetic instability associated with gt is related to perturbations in chromosome metabolism (Green 1982).Abbreviations used UV ultraviolet radiation-principal wavelength 313 nm - AAAF N-acetoxy-2-acetylaminofluorene  相似文献   

3.
The mus(2)201 locus in Drosophila is defined by two mutant alleles that render homozygous larvae hypersensitive to mutagens. Both alleles confer strong in vivo somatic sensitivity to treatment by methyl methanesulfonate, nitrogen mustard and ultraviolet radiation but only weak hypersensitivity to X-irradiation. Unlike the excision-defective mei-9 mutants identified in previous studies, the mus(2)201 mutants do not affect female fertility and do not appear to influence recombination proficiency or chromosome segregation in female meiocytes.—Three independent biochemical assays reveal that cell cultures derived from embryos homozygous for the mus(2)D1 allele are devoid of detectable excision repair. 1. Such cells quantitatively retain pyrimidine dimers in their DNA for 24 hr following UV exposure. 2. No measurable unscheduled DNA synthesis is induced in mutant cultures by UV treatment. 3. Single-strand DNA breaks, which are associated with normal excision repair after treatment with either UV or N-acetoxy-N-acetyl-2-aminofluorene,* are much reduced in these cultures. Mutant cells possess a normal capacity for postreplication repair and the repair of single-strand breaks induced by X-rays.  相似文献   

4.
Summary Six established cell lines have been generated from embryos ofDrosophila melanogaster homozygous for different X-linked mutations. Four of these mutants, confer hypersensitivity to chemical mutagens in larvae. The cell lines derived from the two mutageninsensitive stocks, serve as controls in the analyses of DNA metabolism. One cell line (UCD-Dm-mei-9-2) is uniquely identified by a strong hypersensitivity to ultraviolet radiation. Another (UCD-Dm-mus104-1) expresses an enzyme variant not found in the other lines. The population doubling time for these cultures varies between 24 and 47 h. Labeling indices of 24.4 to 37.5% were found. The duration of the S phase in one of the control cell lines is estimated to be about 9 h. Karyotype stability was monitored for five lines over a period of about 1 y. In general these cultures each, became hypotetraploid with a preferential loss of the Y and fourth chromosomes. DNA synthesis in two of the lines fails to exhibit the pattern of sensitivity to mutagens or caffeine that is observed in the corresponding primary cultures. In primary cultures three classes of cells can be identified by autoradiography. About 50% of the cells label at a moderate rate, 20% do not label within the first 1.5 d of culture, and the remaining cells exhibit a burst of labeling shortly after the cultures are initiated. This research was supported by NIH Grants GM16298 and GM22221 and by DOE Contract AT(04-3)-34 PA 210.  相似文献   

5.
A strain of Chinese hamster ovary cells that is deficient in nucleotide excision repair, strain UV5, was compared with the normal parental CHO cells in terms of cytotoxicity and mutagenesis after exposure to several chemical carcinogens that are known to produce bulky, covalent adducts in DNA. Induced mutations were measured at the hprt locus using thioguanine resistance and at the aprt locus using azaadenine resistance. The compounds tested that required metabolic activation (using rat or hamster microsomal fractions) were 7,12-dimethylbenz(a)anthracene, 3-methylcholanthrene, benzo(a)pyrene, aflatoxin B1, 2-acetylaminofluorene, and 2-naphthylamine. The direct-acting compounds (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, N-acetoxy-2-acetylaminofluorene, and N-OH-2-naphthylamine were also studied. For all compounds except 2-naphthylamine and its active metabolite, the repair-deficient cells were significantly more sensitive to killing than the normal CHO cells. Mutation induction at both loci was also more efficient in UV5 cells in each instance where enhanced cytotoxicity was observed. By using tritium-labeled N-acetoxy-2-acetylaminofluorene, normal and mutant cells were shown to bind mutagen to their nuclear DNA with similar efficiency, and a greater amount of adduct removal occurred in the normal cells. From this study it is concluded that the use of excision repair-deficient CHO cells provides enhanced sensitivity for detecting mutagenesis and that a positive differential cytotoxicity response gives an indication of repairable, potentially lethal genetic damage.  相似文献   

6.
The present study was performed to generate monoclonal antibodies capable of detecting N-acetoxy-2-acetylaminofluorene (NA-AAF)-derived DNA adducts in human cells in situ. As an immunogen, we employed NA-AAF-modified single-stranded DNA coupled electrostatically to methylated protein and we produced five different monoclonal antibodies. All of them showed strong binding to NA-AAF-modified DNA, but had undetectable or minimal binding to undamaged DNA. Competitive inhibition experiments revealed that the epitope recognized by these antibodies is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) in DNA, although deacetylated N-(deoxyguanosin-8-yl)-2-aminofluorene in DNA is also recognized with slightly less efficiency. In contrast, these antibodies did not bind to 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene in DNA or to UV-induced lesions in DNA. Interestingly, they showed only minimal binding to small AAF-nucleoside adducts (dG-C8-AAF), indicating that DNA regions flanking a DNA-bound adduct, in addition to the adduct itself, are essential for the stable binding of the antibodies. Using an enzyme-linked immunosorbent assay with the most promising antibody (AAF-1), we detected the concentration-dependent induction of NA-AAF-modified adducts in DNA from repair deficient xeroderma pigmentosum (XP) cells treated with physiological concentrations of NA-AAF. Moreover, the assay enabled to confirm that normal human cells efficiently repaired NA-AAF-induced DNA adducts but not XP-A cells. Most importantly, the formation of NA-AAF-induced DNA adducts in individual nuclei of XP cells could be clearly visualized using indirect immunofluorescence. Thus, we succeeded in establishing novel monoclonal antibodies capable of the in situ detection of NA-AAF-induced DNA adducts in human cells.  相似文献   

7.
In vitro reactions of DNA with N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF), N-acetoxy-7-ethyl-N-2-acetylaminofluorene (N-AcO-EtAAF), N-acetoxy-7-n-butyl-N-2-acetylaminofluorene (N-AcO-But-AAF) are compared. C-alkylation of N-AcO-AAF affects the reactivity of the metabolite towards DNA. The electronic effect and the size of alkyl group seem to determine the reactivity of the metabolite. Although the adducts are about the same for the three metabolites, the proportion of guanine-C-8 adducts diminishes with an increase in the size of the alkyl group.  相似文献   

8.
Summary Plasmid DNA containing the replication origin of the Escherichia coli chromosome (oriC) has been shown to be inefficient as a template for DNA synthesis in vitro when isolated from dam mutants. here, we extend this study to hemimethylated oriC plasmids and to replication in dam-3 mutant enzyme extracts. The results show that: (1) hemimethylated oriC plasmids replicate with the same low efficiency as nonmethylated DNA; (2) DNA synthesis starts at oriC regardless of the methylated state of the template; (3) replication in dam-3 enzyme extracts is inefficient because this strain is deficient in DnaA protein; and (4) consistent with this observation, the copy number of the oriC plasmid pFH271 is reduced in the dam-3 mutant. However, we have found that low DnaA protein levels in dam-3 mutants are not sufficient to explain the reduced transformation efficiency of oriC plasmids. We suggest that there must exist in vivo inhibitory factors not present or present in low quantities in vitro which specifically recognize the hemimethylated or nonmethylated forms of the oric region.  相似文献   

9.
A sensitive assay for quantitating ‘unscheduled DNA synthesis’ (repair synthesis) in transformed human amnion (AV3) cells has been developed. The combined use of hydroxyurea and arginine-deficient culture medium enabled the detection of 10–20 fold increases in ‘unscheduled DNA synthesis’ after treatment with N-acetoxy-2-acetylaminofluorene or ultraviolet light. The technique allows the detection of ‘DNA repair synthesis’ following treatment with extremely low doses of mutagens and carcinogens.  相似文献   

10.
McN-5195, (±)trans-3-(2-bromophenyl)octahydroindolizine, a novel analgesic, was tested for genotoxic potential in a battery of tests with endpoints of mutagenicity, chromosomal alterations and DNA damage/ repair. McN-5195 was not mutagenic when tested in the Ames test using strains TA98, TA100, TA1535, TA1537 and TA 1538, in the absence of metabolic activation and in the presence of Aroclor 1254-induced rat or hamster S-9. Negative results were also obtained in the mouse lymphoma assay in the absence of activation, but reproducible mutagenic responses were seen in this mammalian cell assay in the presence of rat S-9 at high levels of induced toxicity (reduced cell growth). Testing of the enantiomers of McN-5195 in this assay supported these findings. A predominance of small mutant colonies in the mouse lymphoma assay suggested a potential chromosomal effect of McN-5195. This was confirmed with positive findings in an in vitro cytogenetics assay using CHO cells, again at toxic exposure levels and only in the presence of S-9. McN-5195 did not induce DNA repair in the primary rat hepatocyte/DNA repair assay, nor did it induce alterations in vivo of chromosome structure or number when tested in a rat bone marrow cytogenetics assay. The findings from this battery of tests indicate that McN-5195 has modest genotoxic activity when tested in the presence of rat liver S-9 in in vitro systems sensitive to cytogenetic change. The absence of genotoxicity in vitro in Salmonella and intact liver cells and in vivo in rat bone marrow suggests that McN-5195 is unlikely to present a genotoxic risk to whole animals.Abbreviations 2-AA 2-anthramine - 9-AA 9-aminoacridine HCI - 2-AAF 2-acetylaminofluorene - AO acridine orange - CHO Chinese hamster ovary - CP cyclophosphamide - EMS ethylmethane sulfonate - 3H-dThd methyl-3H-thymidine - LDH lactate dehydrogenase - 3-MCA 3-methylcholanthrene - McN-5195 (±)-trans-3-(2-bromophenyl) octahydroindolizine - McN-5195-11 hydrochloride salt of McN-5195 - Na azide sodium azide - RCG relative clonal growth - RSG relative suspension growth - RTG relative total growth - SMF spontaneous mutation frequency - TEM triethylenemelamine - TFT trifluorothymidine  相似文献   

11.
6 mutant alleles of the mei-41 locus in Drosophila melanogaster are shown to cause hypersensitivity to hydroxyurea in larvae. The strength of that sensitivity is directly correlated with the influence of the mutant alleles on meiosis in that: alleles exhibiting a strong meiotic effect (mei-41D2, mei-41D5, mei-41D7) are highly sensitive; alleles with negligible meiotic effects (mei-41(104)D1, mei-41(104)D2) are moderately sensitive and an allele which expresses meiotic effects only under restricted conditions (mei-41D9) has an intermediate sensitivity. This sensitivity is not a general feature of strong postreplication repair-deficient mutants, because mutants with that phenotype from other loci do not exhibit sensitivity (mus(2)205A1, mus(3)302D1, mus(3)310D1). The observed lethality is not due to hypersensitivity of DNA synthesis in mei-41 larvae to hydroxyurea as assayed by tritiated thymidine incorporation. Lethality is, however, potentially attributable to an abnormal enhancement of chromosomal aberrations by hydroxyurea in mutant mei-41 larvae. Both in vivo and in vitro exposure of neuroblast cells to hydroxyurea results in an increase in 3 types of aberrations which is several fold higher in mei-41 tissue. Since hydroxyurea disrupts DNA synthesis, these results further implicate the mei-41 locus in DNA metabolism and provide an additional tool for an elucidation of its function. The possible existence of additional genes of this nature is suggested by a more modest sensitivity to hydroxyurea which has been detected in two stocks carrying mutagen-sensitive alleles of alternate genes.  相似文献   

12.
Summary Mutants of Escherichia coli completely deficient in RNase H activity were isolated by inserting transposon Tn3 into the structural gene for RNase H, rnh, and its promoter. These rnh - mutants exhibited the following phenotypes; (1) the mutants grew fairly normally, (2) rnh - cells could be transformed with ColE1 derivative plasmids, pBR322 and pML21, though the plasmids were relatively unstable, under non selective conditions, (3) rnh - mutations partially suppressed the temperature-sensitive phenotype of plasmid pSC301, a DNA replication initiation mutant derived from pSC101, (4) rnh - mutations suppressed the temperature-sensitive growth character of dnaA ts mutant, (5) rnh - cells showed continued DNA synthesis in the presence of chloramphenicol (stable DNA replication). Based on these findings we propose a model for a role of RNase H in the initiation of chromosomal DNA replication. We suggest that two types of RNA primers for initiation of DNA replication are synthesized in a dnaA/oriC-dependent and-independent manner and that only the dnaA/oriC-dependent primer is involved in the normal DNA replication since the dnaA/oriC independent primer is selectively degraded by RNase H.Abbreviations APr ampicillin-resistant - kb kilobase pair(s) - NEM N-ethyl maleimide - Ts temperature-sensitive  相似文献   

13.
Summary Primary cell cultures derived from embryos of a control stock of Drosophila melanogaster respond to ultraviolet light within the first hour after exposure with a decline in thymidine incorporation and a decline in the ability to form newly synthesized (nascent) DNA in long segments. Cells derived from two nonallelic excision-defective mutants (mei-9 and mus201) exhibit the same quantitative decline in both phenomena as do control cells. In contrast, cells from five nonallelic postreplication repair-defective mutants (mei-41, mus101, mus205, mus302 and mus310) respond to ultraviolet light by synthesizing nascent DNA in abnormally short segments. Two of these five mutants (mus302 and mus310) also exhibit unusually low thymidine incorporation levels after irradiation, whereas the other three mutants display the normal depression of incorporation.These results indicate that excision repair does not influence the amount or the length of nascent DNA synthesized in Drosophila cells within the first hour after exposure to ultraviolet light. Of the five mutations that diminish postreplication repair, only two reduce the ability of irradiated cells to synthesize normal amounts of DNA.Abbreviation used UV ultraviolet light — principal wavelength 254 nm  相似文献   

14.
Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells progressed to the S phase after 16 h. DNA synthesis peaked 20 h after removal of nutrient stress and declined.Mutations were induced in S-phase cells by methyl methanesulfonate (MMS), N-acetoxy-2-acetylaminofluorene (NA-AAF) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Chemical treatments resulted in an increase in the absolute number of mutant colonies and in a dose-dependent mutation frequency. In this report, we show that NA-AAF evokes a temporal pattern of mutation in synchronized cells, with such mutations being induced only during the S phase. Evidence indicates that presence of S-phase cells in the treated cultures is a prerequisite for the induction of mutations.  相似文献   

15.
5 mutagen-sensitive mutants of Drosophila melanogaster, reported to perform normal or only slightly reduced excision repair of UV damage, were examined by an unscheduled DNA synthesis (UDS) assay. This assay measures the ability of cultured primary cells, derived from each mutant, to perform the resynthesis step in the excision repair pathway, following damage to cellular DNA by direct-acting alkylating agents, UV or X-irradiation. 2 mutants, classified as completely or partially proficient for both excision and postreplication repair of UV damage, mus(1)103 and mus(2)205, were found to give positive UDS responses only for UV damage. These mutants exhibit no measurable UDS activity following DNA damage by several different alkylating agents and X-rays. 3 mutants, classified as having no defect in excision repair, but measurable defects in postreplication repair of UV damage, mei-41, mus(1)101, and mus(3)310 exhibit 3 different response patterns when tested with the battery of agents in the UDS assay. The mutant mei-41 exhibits a highly positive UDS response following damage by all agents, consistent with its prior classification as excision-repair-proficient, but postreplication-repair-deficient for UV damage. The mutant mus(1)101, however, exhibits a strong positive UDS response following only UV damage and appears to be blocked in the excision repair of damage produced by both alkylating agents and X-irradiation. Finally, mus(3)310 exhibits no UDS response to alkylation, X-ray or UV damage. This is not consistent with its previous classification. Results obtained with the quantitative in vitro UDS assay are entirely consistent with the results from two separate in vivo measures of excision repair deficiency following DNA damage, larval hypersensitivity to killing and hypermutability in the sex-linked recessive lethal test.  相似文献   

16.
J. B. Boyd  R. B. Setlow 《Genetics》1976,84(3):507-526
Mutants of Drosophila melanogaster, with suspected repair deficiencies, were analyzed for their capacity to repair damage induced by X-rays and UV radiation. Analysis was performed on cell cultures derived from embryos of homozygous mutant stocks. Postreplication repair following UV radiation has been analyzed in mutant stocks derived from a total of ten complementation groups. Cultures were irradiated, pulse-labeled, and incubated in the dark prior to analysis by alkaline sucrose gradient centrifugation. Kinetics of the molecular weight increase in newly synthesized DNA were assayed after cells had been incubated in the presence or absence of caffeine. Two separate pathways of postreplication repair have been tentatively identified by mutants derived from four complementation groups. The proposed caffeine sensitive pathway (CAS) is defined by mutants which also disrupt meiosis. The second pathway (CIS) is caffeine insensitive and is not yet associated with meiotic functions. All mutants deficient in postreplication repair are also sensitive to nitrogen mustard. The mutants investigated display a normal capacity to repair single-strand breaks induced in DNA by X-rays, although two may possess a reduced capacity to repair damage caused by localized incorporation of high specific activity thymidine-3H. The data have been employed to construct a model for repair of UV-induced damage in Drosophila DNA. Implications of the model for DNA repair in mammals are discussed.  相似文献   

17.
32P-Postlabeling techniques have been developed to detect and measure adducts formed by covalent binding of carcinogens of Known or unknown origin with DNA (and RNA). The assay is applicable to various classes of chemical carcinogens and permits detection of many adducts at attomole (10–18 mol) level using microgram amounts of DNA. Here, we demonstrate the application of the assay for the analysis of short- and long-term persistence of 2-acetylaminofluorene-DNA adducts in rat liver in vivo and also outline examples illustrating the applicability of the procedure to different experimental problems.Abbreviations AAF 2-acetylaminofluorene - N-OH-AAF N-hydroxy-2-acetylaminofluorene  相似文献   

18.
The metabolism and mutagenic activation of 2-acetylaminofluorene by human and rat hepatocytes and kidney cells were measured. High performance liquid chromatography was used to separate the 2-acetylaminofluorene metabolites, and a cell-mediated Salmonella typhimurium mutagenesis assay was used to detect mutagenic intermediates. Rat and human differences were observed with cells from both organs and levels of metabolism and mutagenesis were higher in human cells. Within a species, liver and kidney cell differences were also evident, with levels of hepatocyte-mediated metabolism and mutagenesis being greater than kidney cells. Human inter-individual variation was apparent with cells from both organs, but the variation observed was significantly greater in hepatocytes than kidney cells. A knowledge of such differences, including an understanding that they may vary with the chemical being studied, should be useful in the extrapolation of rodent carcinogenesis data to humans.Abbreviations AAF 2-acetylaminofluorene - AF 2-aminofluorene - DMSO dimethylsulfoxide - HPLC high performance liquid chromatography - N-OH-AAF N-hydroxy-2-acetylaminofluorene - 1-OH-AAF 1-hydroxy-2-acetylaminofluorene - 3-OH-AAF 3-hydroxy-2-acetylaminofluorene - 5/9-OH-AAF a combination of 5 and 9-hydroxy-2-acetylaminofluorene - 7-OH-AAF 7-hydroxy-2-acetylaminofluorene - 8-OH-AAF 8-hydroxy-2-acetylaminofluorene  相似文献   

19.
Repair synthesis in human cells in tissue culture can be readily separated from semi-conservative DNA synthesis with the aid of a benzoylated naphthoylated DEAE cellulose (BND-cellulose) column. Cells are incubated with a radioactive DNA precursor during treatment with a repair-inducing agent. An inhibitor of semi-conservative DNA synthesis (hydroxyurea) is added to slow the progression of the DNA growing point. The cells are lysed and after treatment with ribonuclease and pronase the lysates are sheared and passed through a BND-cellulose column. Native DNA is eluted with I M NaCl. Any increase in radioactivity in the native DNA is due to repair synthesis and the specific repair activity (nucleotides inserted per mug of DNA) can be determined from radioactivity and absorbancy measurements. Repair can also be measured in the region of the DNA growing point by fractionation of the material eluted from BND-cellulose with 50% formamide. Repair was not detected in N-acetoxy-2-acetylaminofluorene (AAAF)-treated lymphoblasts derived from an individual with xeroderma pigmentosum although methyl methanesulfonate (MMS)-induced repair was observed in these cells.  相似文献   

20.
Summary A rice mutant with unique protein expression/ transport properties has been established as cells in liquid suspension and partially characterized. Mutants were originally recovered from anther calli grown for three cycles at inhibitory levels of lysine + threonine and one cycle of S-(2-aminoethyl)cysteine. Cell suspension cultures were started from high lysine-containing seeds regenerated from the inhibitor selections. Cultures of the mutant produce 2 times as much protein per unit weight as is produced by the control. Significant portions of the proteins are exported from the cells into the surrounding medium. The mutant also has 20% greater lysine content in the exported protein than the control. This cell suspension line should be particularly useful for biochemical and molecular studies on protein synthesis and processing phenomena in cereals.Research done under the auspices of the USDA, ARS, Plant Science Institute, Plant Molecular Biology Laboratory, Beltsville, Md 20705, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号