首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethylene-inducing xylanase (EIX) elicits plant defense responses in certain tobacco (Nicotiana tabacum) and tomato cultivars in addition to its xylan degradation activity. It is not clear, however, whether elicitation occurs by cell wall fragments released by the enzymatic activity or by the xylanase protein interacting directly with the plant cells. We cloned the gene encoding EIX protein and overexpressed it in insect cells. To determine the relationship between the two activities, substitution of amino acids in the xylanase active site was performed. Substitution at glutamic acid-86 or -177 with glutamine (Gln), aspartic acid (Asp), or glycine (Gly) inhibited the beta-1-4-endoxylanase activity. Mutants having Asp-86 or Gln-177 also lost the ability to induce the hypersensitive response and ethylene biosynthesis. However, mutants having Gln-86, Gly-86, Asp-177, or Gly-177 retained ability to induce ethylene biosynthesis and the hypersensitive response. Our data show that the xylanase activity of EIX elicitor can be separated from the elicitation process, as some of the mutants lack the former but retain the latter.  相似文献   

2.
Ethylene-inducing xylanase (EIX) elicits plant defense responses in certain tobacco (Nicotiana tabacum) and tomato cultivars in addition to its xylan degradation activity. It is not clear, however, whether elicitation occurs by cell wall fragments released by the enzymatic activity or by the xylanase protein interacting directly with the plant cells. We cloned the gene encoding EIX protein and overexpressed it in insect cells. To determine the relationship between the two activities, substitution of amino acids in the xylanase active site was performed. Substitution at glutamic acid-86 or -177 with glutamine (Gln), aspartic acid (Asp), or glycine (Gly) inhibited the β-1-4-endoxylanase activity. Mutants having Asp-86 or Gln-177 also lost the ability to induce the hypersensitive response and ethylene biosynthesis. However, mutants having Gln-86, Gly-86, Asp-177, or Gly-177 retained ability to induce ethylene biosynthesis and the hypersensitive response. Our data show that the xylanase activity of EIX elicitor can be separated from the elicitation process, as some of the mutants lack the former but retain the latter.  相似文献   

3.
We have previously demonstrated that a protein purified from xylan-induced culture filtrates of Trichoderma viride contains β-1,4-endoxylanase activity and induces ethylene biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) leaf discs. When the ethylene biosynthesis-inducing xylanase (EIX) was applied to cut petioles of detached tobacco leaves, it induced ethylene biosynthesis within 1 hour and extensive electrolyte leakage and necrosis were observed in tobacco leaf tissue within 5 hours. Ethylene-pretreatment (120 microliters per liter ethylene for 14 hours) of tobacco leaves enhanced ethylene biosynthesis in response to EIX by more than threefold and accelerated development of cellular leakage and necrosis. In intact plants, similar symptoms could be induced in leaves that were distant from the point of the enzyme application. The evidence suggests that EIX is translocated via the vascular system and elicits plant responses similar to those observed in a hypersensitive response.  相似文献   

4.
Defense mechanisms of plants against pathogens often entail cell wall strengthening, ethylene biosynthesis, expression of pathogen-related proteins and hypersensitive responses (HR). Pathogen-derived elicitors trigger these defense responses. The Elicitor Ethylene-inducing Xylanase (EIX) elicits HR and other plant defense responses in some tobacco and tomato cultivars independently of its xylan degradation activity. The elicitation epitope on the EIX protein responsible for inducing the HR response has been elucidated. Through the generation of EIX-specific polyclonal antibodies and screening of combinatorial phage display peptide libraries an essential sequence of the EIX elicitation activity has been identified. This sequence consists of the pentapeptide TKLGE mapped to an exposed beta-strand of the EIX protein. Substitution of the pentapeptide TKLGE to VKGT inhibited the elicitation activity but not the beta-1-4-endoxylanase activity of the EIX protein further demonstrating that elicitation and enzyme activity are independent properties. Elucidation of a peptide sequence that is essential for elicitation of HR creates the opportunity to understand the control and signaling of plant defense.  相似文献   

5.
Challenging tomato or tobacco varieties with ethylene-inducing xylanase (EIX) from the fungus Trichoderma viride causes rapid induction of plant defence responses leading to programmed cell death. Using the yeast two-hybrid system, we isolated a novel protein, tomato small ubiquitin-related modifier protein (T-SUMO), which specifically interacts with EIX. T-SUMO, a cytoplasmic protein, is a member of the ubiquitin-like protein family. It shows homology to human protein sentrin/SUMO1, which suppresses tumour necrosis factor-induced cell death. Transgenic plants that express T-SUMO in the sense orientation suppress EIX induction of ethylene biosynthesis and cell death, while in the antisense orientation they enhance EIX-induced ethylene biosynthesis. These results indicate that T-SUMO is involved in mediating the signal generated by EIX that leads to induction of plant defence responses.  相似文献   

6.
Induction of ethylene biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) leaf discs by the ethylene biosynthesis-inducing xylanase (EIX) isolated from Cellulysin or xylan-grown cultures of Trichoderma viride was dependent upon the concentration of xylanase applied and upon the length of incubation. Arrhenius activation energies of 9,100 and 10,500 calories for the Cellulysin and T. viride EIX xylanase activities, respectively, were derived from the Km and Vmax values determined for each enzyme at several temperatures. The two xylanases digested xylan in a strictly endo fashion, releasing neither xylobiose nor free xylose, and no debranching activity was associated with either enzyme. The xylanases released polysaccharides from ground corn cobs, but little or no carbohydrate was released from tobacco mesophyll cell walls incubated with EIX. No heat-stable products capable of inducing ethylene biosynthesis in tobacco leaf discs were found in EIX digests of purified xylans.  相似文献   

7.
The ethylene biosynthesis-inducing xylanase (EIX) is known to be a potent elicitor of ethylene biosynthesis and other responses when applied to leaf tissue of Nicotiana tabacum L. cv Xanthi. In contrast, leaf tissue of the tobacco cultivar Hicks was insensitive to EIX at concentrations 100-fold higher than was needed to elicit responses from Xanthi. Cell-suspension cultures of Xanthi and Hicks showed similar differences in sensitivity to EIX. Equivalent levels of ethylene production were elicited in leaf discs of both cultivars after treatment with CuSO4. The F1 and Xanthi backcross progeny of Hicks and Xanthi crosses were all sensitive to EIX, whereas the F2 and Hicks backcross progeny segregated for sensitivity to EIX. Individual plants from the F2 and Hicks backcross that were insensitive to EIX produced only insensitive progeny when they were self-pollinated. Progeny from sensitive plants either segregated for sensitivity to EIX or produced all sensitive progeny (an F2 plant). Sensitivity to EIX is controlled by a single dominant gene, based on chi-square analysis of segregation ratios.  相似文献   

8.
An ethylene biosynthesis-inducing xylanase (EIX) produced by the fungus Trichoderma viride elicited enhanced ethylene biosynthesis and leakage of potassium and other cellular components when applied to leaf disks of tobacco (Nicotiana tabacum L. cv Xanthi). Suspension-cultured cells of Xanthi tobacco responded to EIX by rapid efflux of potassium, uptake of calcium, alkalization of the medium, inhibition of ethylene biosynthesis, and increased leakage of cellular components. EIX-treated cell suspensions released 1-aminocyclopropane-1-carboxylate (ACC) into the surrounding medium, resulting in a reduction of cellular pools of ACC. The responses of both cell suspensions and leaf disks were inhibited (50-80%) by the preincubation of the tissues with the calcium channel blocker La3+. High concentrations of EGTA inhibited the alkalization of the medium by cell suspensions responding to EIX, but EGTA alone caused extensive loss of K+ and ACC and inhibited ethylene biosynthesis by tobacco cells. Alterations in membrane function appear to be important in the mode of action of EIX in Xanthi cells.  相似文献   

9.
125I-Labeled ethylene biosynthesis-inducing xylanase (EIX) was used to study the movement of this protein in tobacco (Nicotiana tabacum) tissues. A biologically active 125I-labeled EIX was obtained using chloramine-T as the oxidizing agent. Labeled EIX was detected in the far most edges of the leaf 5 min after it was applied to the petiole of a detached leaf. EIX was distributed uniformly throughout the leaf, including the mesophyll area within 5 to 15 min, after which there was only little change in the distribution of radioactivity in the leaf. 125I-Labeled EIX was extracted from treated leaves, and EIX translocation in the leaf was blocked by preincubation of labeled EIX with anti-EIX antibodies, indicating that the intact peptide moves in the leaf. Injection of anti-EIX antibodies into the intercellular spaces of the leaf mesophyll prevented induction of necrosis by EIX, suggesting the mesophyll as the site of EIX action. EIX was translocated both to upper and lower parts of the plant when applied to a whole plant through the petiole of a cut leaf. Radioactivity was found in all leaves and in the stem, although some leaves accumulated much more EIX than others; EIX was not found in the roots. There was no difference between the accumulation pattern of EIX in fresh and ethylene-treated leaves or between sensitive (Xanthi) and insensitive (Hicks) tobacco cultivars. These data support the hypothesis that intact EIX protein is translocated to the leaf mesophyll, where it directly elicits plant defense responses.  相似文献   

10.
Ethylene biosynthesis-inducing xylanase (EIX) from the fungus Trichoderma viride elicits enhanced ethylene production and tissue necrosis in whole tobacco (Nicotiana tabacum cv Xanthi) plants at sites far removed from the point of EIX application when applied through a cut petiole. Symptoms develop in a specific pattern, which appears to be determined by the interconnections of the tobacco xylem. Based on results of tissue printing experiments, EIX enters the xylem of the stem from the point of application and rapidly moves up and down the stem, resulting in localized foliar symptoms on the treated side of the plant above and below the point of EIX application. The observation that a fungal protein that elicits plant defense responses can be translocated through the xylem suggests that plants respond to pathogen-derived extracellular proteins in tissues distant from the invading pathogen.  相似文献   

11.
The isolation, culture and regeneration of Petunia leaf protoplasts   总被引:16,自引:0,他引:16  
Methods are described for the enzymatic release of protoplasts from leaves of Petunia hybrida and for the utilization of protoplasts in studies in plant developmental biology. As a result of spontaneous fusion during cell wall degradation of leaf material, fresh preparations can contain a high proportion of multinucleate protoplasts. This level can be dramatically reduced by a gradual plasmolysis of the material prior to enzyme incubation.Leaf protoplasts maintained in liquid media are seen to undergo cell wall synthesis, “budding,” and limited regenerated cell division sometimes associated with anthocyanin production. Under such conditions, multinucleate cells are formed as a result of mitosis without cytokinesis.Protoplasts, plated out in a fully defined medium, undergo cell wall synthesis followed by sustained progeny cell division with eventual cell colony production. Cell colonies, derived from individual mesophyll protoplasts, grow rapidly upon subculture, to produce callus capable of shoot differentiation and ultimately whole plant formation. Protoplasts isolated from varieties of P. hybrida were found to differ in their cultural requirements.  相似文献   

12.
Previous studies with tobacco (Nicotiana tabacum L.) cell suspensions indicated that elicitation of defense response (production of phytoalexins) with xylanase (1,4-β-D-xylanxylanohydrolase: EC 3.2.1.8) resulted in a dramatic acylation of phytosterols (Moreau et al. 1994). N-acylphosphatidylethanolamine (NAPE), an acylated derivative of phosphatidylethanolamine (PE), was recently demonstrated to be synthesized in vivo in plant tissues (Chapman and Moore 1993a). Here we report that acylation of PE was increased in elicitor-treated cells. NAPE levels increased 3-fold (from 1.6 to 4.8 mol% of total phospholipids) after a 2-h treatment of cell suspensions with xylanase (1 δg ml?1). Specific activity of NAPE synthase increased in parallel with NAPE levels. Levels of NAPE and NAPE synthase activity declined during the period of 2–4 h after elicitation while levels of acylated sterolglycosides (ASG) continued to increase. Radiolabeling studies with [2?14C]-ethanolamine confirmed that three times as much NAPE was synthesized in elicitor-treated cells compared to that in unelicited cells. Patterns of incorporation of [1-14C]-palmitic acid into membrane phospholipids in elicitor-treated cells suggested that increased acylation of lipids may be a result of changes in the acyl-coenzyme A pool. Treatment of cells with purified ethylene biosynthesis-inducing xylanase (EIX; 1 δg ml?1 cells) resulted in increased levels of NAPE synthase activity comparable to those observed with the commercial preparations of xylanase. Boiled xylanase did not elicit an increase in the specific activity of NAPE synthase. Collectively our results demonstrate that the accumulation of NAPE in tobacco cells is attributable to increased activity of NAPE synthase. This suggests that NAPE may be specifically synthesized to play a protective role in membranes of plant cells as has been suggested for membranes of damaged animal cells.  相似文献   

13.
Lotan T  Fluhr R 《Plant physiology》1990,93(2):811-817
Antisera to acidic isoforms of pathogenesis-related proteins were used to measure the induction of these proteins in tobacco (Nicotiana tabacum) leaves. Endo-(1-4)-β-xylanase purified from culture filtrates of Trichoderma viride was a strong elicitor of pathogenesis-related protein synthesis in tobacco leaves. The synthesis of these proteins was localized to tissue at the area of enzyme application. The inhibitors of ethylene biosynthesis and ethylene action, 1-aminoethoxyvinylglycine and silver thiosulfate, inhibited accumulation of pathogenesis-related proteins induced by tobacco mosaic virus and α-aminobutyric acid, but did not inhibit elicitation by xylanase. Likewise, the induction of these proteins by the tobacco pathogen Pseudomonas syringae pv. tabaci was not affected by the inhibitors of ethylene biosynthesis and action. The leaf response to tobacco mosaic virus and α-aminobutyric acid was dependent on light in normal and photosynthetically incompetent leaves. In contrast, the response of leaves to xylanase was independent of light. Tobacco mosaic virus and α-aminobutyric acid induced concerted accumulation of pathogenesis-related proteins. However, xylanase elicited the accumulation of only a subset of these proteins. Specifically, the plant (1-3)-β-glucanases, which are normally a part of the concerted response, were underrepresented. These experiments have revealed the presence of a novel ethylene-independent pathway for pathogenesis-related protein induction that is activated by xylanase.  相似文献   

14.
15.
Challenge of Nicotiana tabacum cv Xanthi with the ethylene-inducing xylanase (EIX) from Trichoderma viride causes rapid induction of plant defense responses leading to hypersensitive necrosis. This phenomenon is cultivar-specific; no response is detected when N. tabacum cv Hicks is similarly treated. The responsiveness is determined in tobacco and tomato by a single dominant gene. EIX was labeled with fluorescein-isothiocyanate and incubated with cell suspension cultures, protoplasts or microsomal membranes. Binding of EIX to the microsomal membranes was found to be specific and saturable, with a dissociation constant of 6.2 nM. Using confocal laser microscopy, the EIX binding site was localized to the plasma membrane. Binding of EIX to its high-affinity site occurred in responsive species. These results demonstrate the existence of a high-affinity binding site for EIX on the plasma membrane of responsive cultivars. Chemical cross-linking of EIX to microsomal membranes from responding plants revealed a 66 kDa protein complex. This protein may function as the receptor that mediates the hypersensitive response induced by EIX binding.  相似文献   

16.
Summary Protoplasts isolated from cell suspension cultures of carrot (Daucus carota L.) and leaves of tobacco (Nicotiana tabacum L.) were treated with three lectins specific for galactosyl residues. After incubation with RCA I (Ricinus communis agglutinin, molecular weight 120,000) conjugated to ferritin or fluorescein, freshly isolated protoplasts displayed heavy labeling of their surfaces. Moreover, they agglutinated rapidly when exposed to low concentrations of RCA I. In parallel studies, PNA (peanut agglutinin) also bound extensively to the protoplast plasma membranes whileBandeiraea simplicifolia lectin I attached relatively weakly. When protoplasts were cultured for two days and then incubated with conjugates of RCA I and PNA, additional binding sites were revealed on the regenerating walls.The results indicate that galactosyl residues are distributed densely over the surface of plant protoplasts. They also allow inferences to be made regarding the positions and linkages of the galactose groups being recognized by the lectins. Moreover, they open up the question whether the galactosyl moieties detected in the wall derive from those labeled on the plasma membrane. To conclude, we make comparisons with binding by concanavalin A, and predict that galactose-recognizing lectins will join and in certain respects prove superior to concanavalin A as probes of the plant cell surface.  相似文献   

17.
Summary A method has been developed for the reuse of cell wall digesting enzymes to isolate protoplasts from actively-growing suspension cultures of plant cells. Protoplasts could be satisfactorily prepared as many as three times using the same enzyme mixture without any loss in yield or viability of the isolated protoplasts. The yields of nuclei isolated from protoplasts prepared with used enzyme solution were comparable to those obtained with fresh enzymes.  相似文献   

18.
19.
An experiment using plant protoplasts has been accepted for the IML-1 mission to be flown on a space shuttle in 1991. Preparatory experiments include studies of cell wall formation, cell division, the effect of simulated weightlessness using fast and slow rotating clinostats, and the development and testing of hardware for the IML-1 mission. After 24 h at 25°C, protoplasts isolated from hypocotyls or leaves of rapeseed seedlings, or from carrot suspension cells, show 60, 20 and 15% cell wall formation, respectively. The time course of formation of the cell wall and cell division could be delayed by treatment at low temperatures or immobilization in alginate or agarose. This aspect is of importance in connection with problems of late access to the space shuttle before launch. At 4°C only 18% of the rapeseed hypocotyl protoplasts had formed cell walls after 24 h. Protoplasts immobilised in agarose or alginate gradually regain their cell division capacity and after 72 h the frequencies are 51 and 26%, respectively, compared to non-immobilised control protoplasts. A significant decrease in cell division activity is observed after rotation for 6 h on the slow clinostat. A similar effect is not observed on the fast clinostat. Protoplasts, cultured in the specially designed plant chamber for up to 14 days established cell aggregates which have further developed into plants.  相似文献   

20.
Fine structure of isolated mesophyll protoplasts of tobacco   总被引:1,自引:1,他引:0  
Summary Protoplasts of palisade cells isolated enzymatically from mature leaves of tobacco were studied with the electron microscope. A cell wall was completely absent, and the chloroplasts contained large inclusion bodies which were believed to be a crystalline form of fraction I protein. The fine structure of the protoplasts was otherwise that of healthy mesophyll cells, indicating that they are in a good physiological state. Some protoplasts were multinucleate as a result of fusion during the isolation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号