首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antithrombin III (ATIII) is the main inhibitor of the coagulation proteases like factor Xa and thrombin. Anticoagulant activity of ATIII is increased by several thousand folds when activated by vascular wall heparan sulfate proteoglycans (HSPGs) and pharmaceutical heparins. ATIII isoforms in human plasma, alpha-ATIII and beta-ATIII differ in the amount of glycosylation which is the basis of differences in their heparin binding affinity and function. Crystal structures and site directed mutagenesis studies have mapped the heparin binding site in ATIII, however the hydrogen bond switch and energetics of interaction during the course of heparin dependent conformational change remains largely unclear. An analysis of heparin bound conformational states of ATIII using PEARLS software showed that in heparin bound intermediate state, Arg 47 and Arg 13 residues make hydrogen bonds with heparin but in the activated conformation Lys 11 and Lys 114 have more hydrogen bond interactions. In the protease bound-antithrombin-pentasaccharide complex Lys 114, Pro 12 and Lys 125 form important hydrogen bonding interactions. The results showed that A-helix and N-terminal end residues are more important in the initial interactions but D-helix is more important during the latter stage of conformational activation and during the process of protease inhibition. We carried out the residue wise Accessible Surface Area (ASA) analysis of alpha and beta ATIII native states and the results indicated major differences in burial of residues from Ser 112 to Ser 116 towards the N-terminal end. This region is involved in the P-helix formation on account of heparin binding. A cavity analysis showed a progressively larger cavity formation during activation in the region just adjacent to the heparin binding site towards the C-terminal end. We hypothesize that during the process of conformational change after heparin binding beta form of antithrombin has low energy barrier to form D-helix extension toward N and C-terminal end as compared to alpha isoform.  相似文献   

2.
Binding of a synthetic, high-affinity heparin pentasaccharide and of intact heparin to both native and elastase-modified human antithrombin III have been examined by 1H-n.m.r. spectroscopy. The pentasaccharide perturbs many protein resonances in the same way as does intact heparin. There are, however, differences that seem to arise both from fewer contacts in the heparin binding-site when the pentasaccharide binds and from dissimilar conformational changes in the protein. The resonance of the H-2 atom of the histidine, considered to be the N-terminal residue and to be located in the heparin binding-site, is strongly perturbed by heparin binding both to native and modified antithrombin. The pentasaccharide has little effect on this histidine in either protein. Resonances from two of the remaining four histidine units are sensitive to longer-range conformational changes, and show differences between binding of the two heparin species both in native and modified ATIII. It is concluded that the pentasaccharide only partly fills the heparin binding-site and does not produce a conformational change identical to that caused by intact heparin. This is particularly significant as regards the mechanism of action of heparin, because the synthetic pentasaccharide activates ATIII towards Factor Xa, but not towards thrombin.  相似文献   

3.
Johnson DJ  Huntington JA 《Biochemistry》2003,42(29):8712-8719
Antithrombin is activated as an inhibitor of the coagulation proteases through its specific interaction with a heparin pentasaccharide. The binding of heparin induces a global conformational change in antithrombin which results in the freeing of its reactive center loop for interaction with target proteases and a 1000-fold increase in heparin affinity. The allosteric mechanism by which the properties of antithrombin are altered by its interactions with the specific pentasaccharide sequence of heparin is of great interest to the medical and protein biochemistry communities. Heparin binding has previously been characterized as a two-step, three-state mechanism where, after an initial weak interaction, antithrombin undergoes a conformational change to its high-affinity state. Although the native and heparin-activated states have been determined through protein crystallography, the number and magnitude of conformational changes render problematic the task of determining which account for the improved heparin affinity and how the heparin binding region is linked to the expulsion of the reactive center loop. Here we present the structure of an intermediate pentasaccharide-bound conformation of antithrombin which has undergone all of the conformational changes associated with activation except loop expulsion and helix D elongation. We conclude that the basis of the high-affinity state is not improved interaction with the pentasaccharide but a lowering of the global free energy due to conformational changes elsewhere in antithrombin. We suggest a mechanism in which the role of helix D elongation is to lock antithrombin in the five-stranded fully activated conformation.  相似文献   

4.
The serpin, antithrombin, requires allosteric activation by a sequence-specific pentasaccharide unit of heparin or heparan sulfate glycosaminoglycans to function as an anticoagulant regulator of blood clotting proteases. Surprisingly, X-ray structures have shown that the pentasaccharide produces similar induced-fit changes in the heparin binding site of native and latent antithrombin despite large differences in the heparin affinity and global conformation of these two forms. Here we present kinetic evidence for similar induced-fit mechanisms of pentasaccharide binding to native and latent antithrombins and kinetic simulations which together support a three-step mechanism of allosteric activation of native antithrombin involving two successive conformational changes. Equilibrium binding studies of pentasaccharide interactions with native and latent antithrombins and the salt dependence of these interactions suggest that each conformational change is associated with distinct spectroscopic changes and is driven by a progressively better fit of the pentasaccharide in the binding site. The observation that variant antithrombins that cannot undergo the second conformational change bind the pentasaccharide like latent antithrombin and are partially activated suggests that both conformational changes contribute to allosteric activation, in agreement with a recently proposed model of allosteric activation.  相似文献   

5.
Serine Protease inhibitors (Serpins) like antithrombin, antitrypsin, neuroserpin, antichymotrypsin, protein C-inhibitor and plasminogen activator inhibitor is involved in important biological functions like blood coagulation, fibrinolysis, inflammation, cell migration and complement activation. Serpins native state is metastable, which undergoes transformation to a more stable state during the process of protease inhibition. Serpins are prone to conformation defects, however little is known about the factors and mechanisms which promote its conformational change and misfolding. Helix B region in serpins is with several point mutations which result in pathological conditions due to polymerization. Helix B analysis for residue burial and cavity was undertaken to understand its role in serpin structure function. A structural overlap and an accessible surface area analysis showed the deformation of strand 6B and exposure of helix B at N-terminal end in cleaved conformation but not in the native and latent conformation of various inhibitory serpins. A cleaved polymer like conformation of antitrypsin also showed deformation of s6B and helix B exposure. Cavity analysis showed that helix B residues were part of the largest cavity in most of the serpins in the native state which increase in size during the transformation to cleaved and latent states. These data for the first time show the importance of strand 6B deformation and exposure of helix B in smooth insertion of the reactive center loop during serpin inhibition and indicate that helix B exposure due to variants may increase its polymer propensity. ABBREVIATIONS: serpin -serine protease inhibitors RCL -reactive center loop ASA -accessible surface area.  相似文献   

6.
The serpin antithrombin is a slow thrombin inhibitor that requires heparin to enhance its reaction rate. In contrast, alpha1-proteinase inhibitor (alpha1PI) Pittsburgh (P1 Met --> Arg natural variant) inhibits thrombin 17 times faster than pentasaccharide heparin-activated antithrombin. We present here x-ray structures of free and S195A trypsin-bound alpha1PI Pittsburgh, which show that the reactive center loop (RCL) possesses a canonical conformation in the free serpin that does not change upon binding to S195A trypsin and that contacts the proteinase only between P2 and P2'. By inference from the structure of heparin cofactor II bound to S195A thrombin, this RCL conformation is also appropriate for binding to thrombin. Reaction rates of trypsin and thrombin with alpha1PI Pittsburgh and antithrombin and their P2 variants show that the low antithrombin-thrombin reaction rate results from the antithrombin RCL sequence at P2 and implies that, in solution, the antithrombin RCL must be in a similar canonical conformation to that found here for alpha1PI Pittsburgh, even in the nonheparin-activated state. This suggests a general, limited, canonical-like interaction between serpins and proteinases in their Michaelis complexes.  相似文献   

7.
The poor inhibitory activity of circulating antithrombin (AT) is critical to the formation of blood clots at sites of vascular damage. AT becomes an efficient inhibitor of the coagulation proteases only after binding to a specific heparin pentasaccharide, which alters the conformation of the reactive center loop (RCL). The molecular basis of this activation event lies at the heart of the regulation of hemostasis and accounts for the anticoagulant properties of the low molecular weight heparins. Although several structures of AT have been solved, the conformation of the RCL in native AT remains unknown because of the obligate crystal contact between the RCL of native AT and its latent counterpart. Here we report the crystallographic structure of a variant of AT in its monomeric native state. The RCL shifted approximately 20 A, and a salt bridge was observed between the P1 residue (Arg-393) and Glu-237. This contact explains the effect of mutations at the P1 position on the affinity of AT for heparin and also the properties of AT-Truro (E237K). The relevance of the observed conformation was verified through mutagenesis studies and by solving structures of the same variant in different crystal forms. We conclude that the poor inhibitory activity of the circulating form of AT is partially conferred by intramolecular contacts that restrain the RCL, orient the P1 residue away from attacking proteases, and additionally block the exosite utilized in protease recognition.  相似文献   

8.
Abstract

The activity of antithrombin (AT), a serpin protease inhibitor, is enhanced by heparin and heparin analogs against its target proteases, mainly thrombin, factors Xa and IXa. Considerable amount of information is available on the multistep mechanism of the heparin pentasaccharide binding and conformational activation. However, much of the details were inferred from ‘static’ structures obtained by X-ray diffraction. Moreover, limited information is available for the early steps of binding mechanism other than kinetic studies with various ligands. To gain insights into these processes, we performed enhanced sampling molecular dynamics (MD) simulations using the Gaussian Accelerated Molecular Dynamics (GAMD) method, applied previously in drug binding studies. We were able to observe the binding of the pentasaccharide idraparinux to a ‘non-activated’ AT conformation in two separate trajectories with low root mean square deviation (RMSD) values compared to X-ray structures of the bound state. These trajectories along with further simulations of the AT-pentasaccharide complex provided insights into the mechanisms of multiple conformational transitions, including the expulsion of the hinge region, the extension of helix D and the conformational behavior of the reactive center loop (RCL). We could also confirm the high stability of helix P in non-activated AT conformations, such states might play an important role in heparin binding. ‘Generalized correlation’ matrices revealed possible paths of allosteric signal propagation to the binding sites for the target proteases, factors Xa and IXa. Enhanced MD simulations of ligand binding to AT may assist the design of new anticoagulant drugs.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
Allosteric activation of antithrombin as a rapid inhibitor of factors IXa and Xa requires binding of a high-affinity heparin pentasaccharide. The currently-accepted mechanism involves removal of a constraint on the antithrombin reactive center loop (RCL) so that the proteinase can simultaneously engage both the P1 arginine and an exosite at Y253. Recent results suggest that this mechanism is incorrect in that activation can be achieved without loop expulsion, while the exosite can be engaged in both low and high activity states. We propose a quite different mechanism in which heparin activates antithrombin by mitigating an unfavorable surface interaction, by altering its nature, and by moving the attached proteinase away from the site of the unfavorable interaction through RCL expulsion.  相似文献   

10.
One of the many interactions important for stabilizing the T state of aspartate carbamoyltransferase occurs between residues Tyr240 and Asp271 within one catalytic chain. The functional importance of this polar interaction was documented by site-directed mutagenesis in which the tyrosine was replaced by a phenylalanine [Middleton, S. A., & Kantrowitz, E. R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5866-5870]. In the Tyr240----Phe mutant, the aspartate concentration required to achieve half-maximum velocity is reduced to 4.7 from 11.9 mM for the native enzyme. Here, we report an X-ray crystallographic study of the Tyr240----Phe enzyme at 2.5-A resolution. While employing crystallization conditions identical with those used to grow cytidine triphosphate ligated T-state crystals of the native enzyme, we obtain crystals of the mutant enzyme that are isomorphous to those of the native enzyme. Refinement of the mutant structure to an R factor of 0.219 (only eight solvent molecules included) and subsequent comparison to the native T-state structure indicate that the quaternary, tertiary, and secondary structures of the mutant are similar to those for the native T-state enzyme. However, the conformation of Phe240 in one of the two crystallographically independent catalytic chains contained in the asymmetric unit is significantly different from the conformation of Tyr240 in the native T-state enzyme and similar to the conformation of Tyr240 as determined from the R-state structure [Ke, H.-M., Lipscomb, W. N., Cho, Y. J., & Honzatko, R. B. (1988) J. Mol. Biol. (in press)], thereby indicating that the mutant has made a conformational change toward the R state, localized at the site of the mutation in one of the catalytic chains.  相似文献   

11.
Antithrombin requires allosteric activation by heparin for efficient inhibition of its target protease, factor Xa. A pentasaccharide sequence found in heparin activates antithrombin by inducing conformational changes that affect the reactive center of the inhibitor resulting in optimal recognition by factor Xa. The mechanism of transmission of the activating conformational change from the heparin-binding region to the reactive center loop remains unresolved. To investigate the role of helix D elongation in the allosteric activation of antithrombin, we substituted a proline residue for Lys(133). Heparin binding affinity was reduced by 25-fold for the proline variant compared with the control, and a significant decrease in the associated intrinsic fluorescence enhancement was also observed. Rapid kinetic studies revealed that the main reason for the reduced affinity for heparin was an increase in the rate of the reverse conformational change step. The pentasaccharide-accelerated rate of factor Xa inhibition for the proline variant was 10-fold lower than control, demonstrating that the proline variant cannot be fully activated toward factor Xa. We conclude that helix D elongation is critical for the full conversion of antithrombin to its high affinity, activated state, and we propose a mechanism to explain how helix D elongation is coupled to allosteric activation.  相似文献   

12.
Allosteric conformational changes in antithrombin induced by binding a specific heparin pentasaccharide result in very large increases in the rates of inhibition of factors IXa and Xa but not of thrombin. These are accompanied by CD, fluorescence, and NMR spectroscopic changes. X-ray structures show that heparin binding results in extension of helix D in the region 131–136 with coincident, and possibly coupled, expulsion of the hinge of the reactive center loop. To examine the importance of helix D extension, we have introduced strong helix-promoting mutations in the 131–136 region of antithrombin (YRKAQK to LEEAAE). The resulting variant has endogenous fluorescence indistinguishable from WT antithrombin yet, in the absence of heparin, shows massive enhancements in rates of inhibition of factors IXa and Xa (114- and 110-fold, respectively), but not of thrombin, together with changes in near- and far-UV CD and 1H NMR spectra. Heparin binding gives only ∼3–4-fold further rate enhancement but increases tryptophan fluorescence by ∼23% without major additional CD or NMR changes. Variants with subsets of these mutations show intermediate activation in the absence of heparin, again with basal fluorescence similar to WT and large increases upon heparin binding. These findings suggest that in WT antithrombin there are two major complementary sources of conformational activation of antithrombin, probably involving altered contacts of side chains of Tyr-131 and Ala-134 with core hydrophobic residues, whereas the reactive center loop hinge expulsion plays only a minor additional role.  相似文献   

13.
G H Nam  D S Jang  S S Cha  T H Lee  D H Kim  B H Hong  Y S Yun  B H Oh  K Y Choi 《Biochemistry》2001,40(45):13529-13537
Ketosteroid isomerase (KSI) from Pseudomonas putida biotype B is a homodimeric enzyme catalyzing an allylic rearrangement of Delta5-3-ketosteroids at rates comparable with the diffusion-controlled limit. The tyrosine triad (Tyr14.Tyr55.Tyr30) forming a hydrogen-bond network in the apolar active site of KSI has been characterized in an effort to identify the roles of the phenyl rings in catalysis, stability, and unfolding of the enzyme. The replacement of Tyr14, a catalytic residue, with serine resulted in a 33-fold decrease of kcat, while the replacements of Tyr30 and Tyr55 with serine decreased kcat by 4- and 51-fold, respectively. The large decrease of kcat for Y55S could be due to the structural perturbation of alpha-helix A3, which results in the reorientation of the active-site residues as judged by the crystal structure of Y55S determined at 2.2 A resolution. Consistent with the analysis of the Y55S crystal structure, the far-UV circular dichroism spectra of Y14S, Y30S, and Y55S indicated that the elimination of the phenyl ring of the tyrosine reduced significantly the content of alpha-helices. Urea-induced equilibrium unfolding experiments revealed that the DeltaG(U)H2O values of Y14S, Y30S, and Y55S were significantly decreased by 11.9, 13.7, and 9.5 kcal/mol, respectively, as compared with that of the wild type. A characterization of the unfolding kinetics based on PhiU-value analysis indicates that the interactions mediated by the tyrosine triad in the native state are very resistant to unfolding. Taken together, our results demonstrate that the internal packing by the phenyl rings in the active-site tyrosine triad contributes to the conformational stability and catalytic activity of KSI by maintaining the structural integrity of the alpha-helices.  相似文献   

14.
Antithrombin becomes an efficient inhibitor of factor Xa and thrombin by binding a specific pentasaccharide sequence found on a small fraction of the heparan sulfate proteoglycans lining the microvaculature. In the structure of native antithrombin, the reactive center loop is restrained due to the insertion of its hinge region into the main beta-sheet A, whereas in the heparin-activated state the reactive center loop is freed from beta-sheet A. In both structures, hinge region residue Glu-381 makes several stabilizing contacts. To determine the role of these contacts in the allosteric mechanism of antithrombin activation, we replaced Glu-381 with an alanine. This variant is less active toward its target proteases than control antithrombin, due to a perturbation of the equilibrium between the two forms, and to an increase in stoichiometry of inhibition. Pentasaccharide binding affinity is reduced 4-fold due to an increase in the off-rate. These data suggest that the main role of Glu-381 is to stabilize the activated conformation. Stability studies also showed that the E381A variant is resistant to continued insertion of its reactive center loop upon incubation at 50 degrees C, suggesting new stabilizing interactions in the native structure. To test this hypothesis, and to aid in the interpretation of the kinetic data we solved to 2.6 A the structure of the variant. We conclude that wild-type Glu-381 interactions stabilize the activated state and decreases the energy barrier to full loop insertion.  相似文献   

15.
Plasminogen activator inhibitor-1 (PAI-1) belongs to the serine protease inhibitor (serpin) protein family, which has a common tertiary structure consisting of three beta-sheets and several alpha-helices. Despite the similarity of its structure with those of other serpins, PAI-1 is unique in its conformational lability, which allows the conversion of the metastable active form to a more stable latent conformation under physiological conditions. For the conformational conversion to occur, the reactive center loop (RCL) of PAI-1 must be mobilized and inserted into the major beta-sheet, A sheet. In an effort to understand how the structural conversion is regulated in this conformationally labile serpin, we modulated the length of the RCL of PAI-1. We show that releasing the constraint on the RCL by extension of the loop facilitates a conformational transition of PAI-1 to a stable state. Biochemical data strongly suggest that the stabilization of the transformed conformation is owing to the insertion of the RCL into A beta-sheet, as in the known latent form. In contrast, reducing the loop length drastically retards the conformational change. The results clearly show that the constraint on the RCL is a factor that regulates the conformational transition of PAI-1.  相似文献   

16.
The dissociation equilibrium constant for heparin binding to antithrombin III (ATIII) is a measure of the cofactor's binding to and activation of the proteinase inhibitor, and its salt dependence indicates that ionic and non-ionic interactions contribute approximately 40 and approximately 60% of the binding free energy, respectively. We now report that phenylalanines 121 and 122 (Phe-121 and Phe-122) together contribute 43% of the total binding free energy and 77% of the energy of non-ionic binding interactions. The large contribution of these hydrophobic residues to the binding energy is mediated not by direct interactions with heparin, but indirectly, through contacts between their phenyl rings and the non-polar stems of positively charged heparin binding residues, whose terminal amino and guanidinium groups are thereby organized to form extensive and specific ionic and non-ionic contacts with the pentasaccharide. Investigation of the kinetics of heparin binding demonstrated that Phe-122 is critical for promoting a normal rate of conformational change and stabilizing AT*H, the high affinity-activated binary complex. Kinetic and structural considerations suggest that Phe-122 and Lys-114 act cooperatively through non-ionic interactions to promote P-helix formation and ATIII binding to the pentasaccharide. In summary, although hydrophobic residues Phe-122 and Phe-121 make minimal contact with the pentasaccharide, they play a critical role in heparin binding and activation of antithrombin by coordinating the P-helix-mediated conformational change and organizing an extensive network of ionic and non-ionic interactions between positively charged heparin binding site residues and the cofactor.  相似文献   

17.
The polymerase chain reaction and direct sequencing were used to determine the nature of the mutations in the antithrombin III (AT3) gene in seven unrelated patients with familial antithrombin III (ATIII) deficiency and recurrent venous thrombosis. Three novel mutations were found, two associated with a type I deficiency state (Pro80Thr and His120Tyr) manifesting reduced synthesis of ATIII. The other novel lesion (Met251Ile) was associated with a dysfunctional ATIII protein (type II ATIII deficiency) and is predicted to interfere either with a heparin-induced conformational change in the ATIII molecule or with docking to thrombin. A novel polymorphism (Tyr158Cys) was also found to occur in several individuals of Scandinavian origin.  相似文献   

18.
A peptide model for the heparin binding site of antithrombin III (ATIII) was synthesized to elucidate the structural consequences of heparin binding. This peptide [ATIII(123-139)] and a sequence-permuted analogue (ATIII random) showed similar conformational behavior (as analyzed by circular dichroism spectroscopy) in aqueous and organic media. In the presence of heparin, however, the peptide ATIII(123-139) assumed a stable conformation, whereas peptide ATIII random did not. Complex formation was saturable and sensitive to salt. The ATIII(123-139)-heparin complex contained beta-structure, rather than helical structure. This finding is incompatible with current models of heparin binding and suggests that heparin binding may induce nonnative structures at the binding site which could, in turn, lead to activation of ATIII. The peptide ATIII(123-139) was able to inhibit the binding of ATIII by heparin, consistent with the notion that this peptide may be a model for the heparin binding site.  相似文献   

19.
Antithrombin is unique among the serpins in that it circulates in a native conformation that is kinetically inactive toward its target proteinase, factor Xa. Activation occurs upon binding of a specific pentasaccharide sequence found in heparin that results in a rearrangement of the reactive center loop removing constraints on the active center P1 residue. We determined the crystal structure of an activated antithrombin variant, N135Q S380C-fluorescein (P14-fluorescein), in order to see how full activation is achieved in the absence of heparin and how the structural effects of the substitution in the hinge region are translated to the heparin binding region. The crystal structure resembles native antithrombin except in the hinge and heparin binding regions. The absence of global conformational change allows for identification of specific interactions, centered on Glu(381) (P13), that are responsible for maintenance of the solution equilibrium between the native and activated forms and establishes the existence of an electrostatic link between the hinge region and the heparin binding region. A revised model for the mechanism of the allosteric activation of antithrombin is proposed.  相似文献   

20.
The glutathione S-transferase (GST) isozyme A1-1 contains at its active site a catalytic tyrosine, Tyr9, which hydrogen bonds to, and stabilizes, the thiolate form of glutathione, GS-. In the substrate-free GST A1-1, the Tyr 9 has an unusually low pKa, approximately 8.2, for which the ionization to tyrosinate is monitored conveniently by UV and fluorescence spectroscopy in the tryptophan-free mutant, W21F. In addition, a short alpha-helix, residues 208-222, provides part of the GSH and hydrophobic ligand binding sites, and the helix becomes "disordered" in the absence of ligands. Here, hydrostatic pressure has been used to probe the conformational dynamics of the C-terminal helix, which are apparently linked to Tyr 9 ionization. The extent of ionization of Tyr 9 at pH 7.6 is increased dramatically at low pressures (p1/2 = 0.52 kbar), based on fluorescence titration of Tyr 9. The mutant protein W21F:Y9F exhibits no changes in tyrosine fluorescence up to 1.2 kbar; pressure specifically ionizes Tyr 9. The volume change, delta V, for the pressure-dependent ionization of Tyr 9 at pH 7.6, 19 degrees C, was -33 +/- 3 mL/mol. In contrast, N-acetyl tyrosine exhibits a delta V for deprotonation of -11 +/- 1 mL/mol, beginning from the same extent of initial ionization, pH 9.5. The pressure-dependent ionization is completely reversible for both Tyr 9 and N-acetyl tyrosine. Addition of S-methyl GSH converted the "soft" active site to a noncompressible site that exhibited negligible pressure-dependent ionization of Tyr 9 below 0.8 kbar. In addition, Phe 220 forms part of an "aromatic cluster" with Tyr 9 and Phe 10, and interactions among these residues were hypothesized to control the order of the C-terminal helix. The amino acid substitutions F220Y, F2201, and F220L afford proteins that undergo pressure-dependent ionization of Tyr 9 with delta V values of 31 +/- 2 mL/mol, 43 +/- 3 mL/mol, and 29 +/- 2 mL/mol, respectively. The p1/2 values for Tyr 9 ionization were 0.61 kbar, 0.41 kbar, and 0.46 kbar for F220Y, F220I, and F220L, respectively. Together, the results suggest that the C-terminal helix is conformationally heterogeneous in the absence of ligands. The conformations differ little in free energy, but they are significantly different in volume, and mutations at Phe 220 control the conformational distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号