首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A survey of fragile X syndrome in a sample from Spanish Basque country   总被引:1,自引:0,他引:1  
Fragile X syndrome is the most common inherited form of mental retardation. The syndrome is associated with a CGG repeat expansion in the 5'UTR of the first exon of the FMR1 gene. This gene maps to Xq27.3 and coincides with the cytogenetic fragile site (FRAXA). The present study deals with the prevalence of fragile X syndrome among individuals with mental retardation of unknown cause from institutions and special schools from the Spanish Basque Country. Results of cytogenetic and molecular studies, performed in a group of 134 unrelated individuals (92 males and 42 females) are presented. The cytogenetic marker at Xq27.3 was identified in 12 patients. Other chromosomal abnormalities were found in two cases that this and previous studies confirmed as Angelman and Prader-Willi syndromes. Two males, in whom the cytogenetic marker was identified, were found negative for FRAXA and FRAXE expansion at the molecular level. The present study shows that the frequency of the FRAXA full mutation in individuals of Spanish non-Basque origin is in the range of other Spanish populations. In the sample of Spanish Basque origin we have not found cytogenetic FRAXA site expression, and the CGG repeat size of FMR1 gene is in the normal range. The significance of these results are discussed.  相似文献   

3.
Isolation of a human DNA sequence which spans the fragile X   总被引:3,自引:0,他引:3       下载免费PDF全文
To identify the sequences involved in the expression of the fragile X and to characterize the molecular basis of the genetic lesion, we have constructed yeast artificial chromosomes (YACs) containing human DNA and have screened them with cloned DNA probes which map close to the fragile site at Xq27.3. We have isolated and partly characterized a YAC containing approximately 270 kb of human DNA from an X chromosome which expresses the fragile X. This sequence in a yeast artificial ring chromosome, XTY26, hybridizes to the two closest DNA markers, VK16 and Do33, which flank the fragile site. The human DNA sequence in XTY26 also spans the fragile site on chromosome in situ hybridization. When a restriction map of XTY26, derived by using infrequently cutting restriction enzymes, is compared with similar YAC maps derived from non-fragile-X patients, no large-scale differences are observed. This YAC, XTY26, may enable (a) the fragile site to be fully characterized at the molecular level and (b) the pathogenetic basis of the fragile-X syndrome to be determined.  相似文献   

4.
脆性X综合征的基因诊断与产前诊断   总被引:6,自引:0,他引:6  
为了探讨简便、快速、准确、价廉的脆性X综合征的诊断方法,对6个智能低下家系进行了细胞遗传学检查,以及PCR直接扩增FMR1 5'端(CGG)n<\sub>重复序列、RT-PCR扩增FMR1基因的cDNA序列的分子遗传学检查。A家系先证者脆性X染色体高表达(35/273),分子遗传学检查证实为脆性X综合征全突变患者;B家系先证者及其母亲无脆性X染色体表达,分子遗传学检查证实为非脆性X综合征患者;C家系的男性胎儿脆性X染色体表达(5/93),先证者及其母亲未发现脆性X染色体,分子遗传学检查证实男性胎儿为脆性X综合征全突变患者,其母亲为前突变携带者,哥哥为嵌合体患者;D家系先证者脆性X染色体高表达17%,其姐姐脆性X染色体5%,分子遗传学检查证实先证者为脆性X综合征全突变患者,其姐姐为嵌合体患者;E家系先证者及其母亲,F家系先证者发现可疑脆性X染色体,分子遗传学检查证实为非脆性X综合征家系。结论: PCR直接扩增FMR1基因(CGG)n<\sub>重复序列联合RT-PCR扩增FMR1基因cDNA 序列简便、快速、价廉。可用于脆性X综合征的筛查、诊断及产前诊断,有推广应用价值。  相似文献   

5.
The folate-sensitive fragile site FRAXE is located in proximal Xq28 of the human X chromosome and lies approximately 600 kb distal to the fragile X syndrome (FRAXA) fragile site at Xq27.3. The cytogenetic expression of FRAXE is thought to be associated with mental handicap, but this is usually mild compared to that of the more common fragile X syndrome that is associated with the expression of the FRAXA fragile site. The exact incidence of FRAXE mental retardation is uncertain. We describe here the results of a U.K. survey designed to assess the frequency of FRAXE in a population of individuals referred for fragile X syndrome testing and found to be negative for expansion events at the FRAXA locus. No FRAXE expansion events were found in 362 cytogenetically negative males studied, and one expansion event was identified in a sample of 534 males for whom cytogenetic analyses were either unrecorded or not performed. Further FRAXE expansion events were detected in two related females known to be cytogenetically positive for a fragile site in Xq27.3-28. To gain insight into the FRAXE phenotype, the clinical details of the identified FRAXE male plus three other FRAXE individuals identified through previous referrals for fragile X syndrome testing are presented. For the population studied, we conclude that FRAXE mental retardation is a relatively rare but significant form of mental retardation for which genetic diagnosis would be appropriate.  相似文献   

6.
A young girl with a clinically moderate form of myotubular myopathy was found to carry a cytogenetically detectable deletion in Xq27-q28. The deletion had occurred de novo on the paternal X chromosome. It encompasses the fragile X (FRAXA) and Hunter syndrome (IDS) loci, and the DXS304 and DXS455 markers, in Xq27.3 and proximal Xq28. Other loci from the proximal half of Xq28 (DXS49, DXS256, DXS258, DXS305, and DXS497) were found intact. As the X-linked myotubular myopathy locus (MTM1) was previously mapped to Xq28 by linkage analysis, the present observation suggested that MTM1 is included in the deletion. However, a significant clinical phenotype is unexpected in a female MTM1 carrier. Analysis of inactive X-specific methylation at the androgen receptor gene showed that the deleted X chromosome was active in ~80% of leukocytes. Such unbalanced inactivation may account for the moderate MTM1 phenotype and for the mental retardation that later developed in the patient. This observation is discussed in relation to the hypothesis that a locus modulating X inactivation may lie in the region. Comparison of this deletion with that carried by a male patient with a severe Hunter syndrome phenotype but no myotubular myopathy, in light of recent linkage data on recombinant MTM1 families, led to a considerable refinement of the position of the MTM1 locus, to a region of ~600 kb, between DXS304 and DXS497.  相似文献   

7.
Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.  相似文献   

8.
Fragile X syndrome (FXS) is the most common inheritable form of intellectual disability. FMR1, the gene responsible for FXS, is located on human chromosome Xq27.3 and contains a stretch of CGG trinucleotide repeats in its 5′ untranslated region. FXS is caused by CGG repeats that expand beyond 200, resulting in FMR1 silencing via promoter hypermethylation. The molecular mechanism underlying CGG repeat expansion, a fundamental cause of FXS, remains poorly understood, partly due to a lack of experimental systems. Accumulated evidence indicates that the large chromosomal region flanking a CGG repeat is critical for repeat dynamics. In the present study, we isolated and introduced whole human X chromosomes from healthy, FXS premutation carriers, or FXS patients who carried disease condition-associated CGG repeat lengths, into mouse A9 cells via microcell-mediated chromosome transfer. The CGG repeat length-associated methylation status and human FMR1 expression in these monochromosomal hybrid cells mimicked those in humans. Thus, this set of A9 cells containing CGG repeats from three different origins (FXS-A9 panel) may provide a valuable resource for investigating a series of genetic and epigenetic CGG repeat dynamics during FXS pathogenesis.  相似文献   

9.
Physical mapping studies on the human X chromosome in the region Xq27-Xqter   总被引:23,自引:0,他引:23  
We have characterized three terminal deletions of the long arm of the X chromosome. Southern analysis using Xq27/q28 probes suggests that two of the deletions have breakpoints near the fragile site at Xq27.3. Flow karyotype analysis provides an estimate of 12 X 10(6) bp for the size of the deleted region. We have not detected the deletion breakpoints by pulsed-field gel electrophoresis (PFGE) using the closet DNA probes, proximal to the fragile site. The physical distance between the breakpoints and the probes may therefore be several hundred kilobases. The use of the deletion patients has allowed a preliminary physical map of Xq27/28 to be constructed. Our data suggest that the closest probes to the fragile site on the proximal side are 4D-8 (DXS98), cX55.7 (DXS105), and cX33.2 (DXS152). PFGE studies provide evidence for the physical linkage of 4D-8, cX55.7, and cX33.2. We have also found evidence for the physical linkage of F8C, G6PD, and 767 (DXS115), distal to the fragile site.  相似文献   

10.
The most common genetic cause of mental retardation after Down's syndrome, the fragile X syndrome, is associated with the occurrence of a fragile site at Xq27.3. This X-linked disease is intriguing because transmission can occur through phenotypically normal males. Theories to explain this unusual phenomenon include genomic rearrangements and methylation changes associated with a local block of reactivation of the X chromosome. Using microdissected markers close to the fragile site, we have been able to test these hypotheses. We present evidence for the association of methylation with the expression of the disease. However, there is no simple relationship between the degree of methylation and either the level of expression of the fragile site or the severity of the clinical phenotype.  相似文献   

11.
A Y/5 translocation in a 45,X male with cri du chat syndrome   总被引:2,自引:2,他引:0  
Summary In a patient described as a 45,X male with cri du chat syndrome, combined cytogenetic and molecular methods revealed Y euchromatic material to be translocated onto the short arm of one chromosome 5, resulting in a chromosome der(5)(5qter5p14::Yp11.31Ypter). The translocated Y euchromatin comprised only the distal short arm including the pseudoautosomal region and the so-called deletion intervals 1 and 2. A review of 45,X males from the literature showed that; most of them carry a paternally transmitted Y/autosome translocations; resulting in various autosomal deletions. Depending on the segment concerned, the deletion led to congenital malformations.  相似文献   

12.
Fragile X Syndrome (FXS) is associated with an unstable CGG repeat sequence in the 5’ untranslated region in the first exon of the FMR1 gene which resides at chromosome position Xq27.3 and is coincident with the fragile site FRAXA. The CGG sequence is polymorphic with respect to size and purity of the repeat. Interpopulation variation in the polymorphism of the FMR1 gene and consequently, in the predisposition to FXS due to the prevalence of certain unstable alleles has been observed. Spanish Basque population is distributed among narrow valleys in northeastern Spain with little migration between them until recently. This characteristic may have had an effect on allelic frequency distributions. We had previously reported preliminary data on the existence of FMR1 allele differences between two Basque valleys (Markina and Arratia). In the present work we extended the study to Uribe, Gernika, Durango, Goierri and Larraun, another five isolated valleys enclosing the whole area within the Spanish Basque region. We analyzed the prevalence of FMR1 premutated and intermediate/grey zone alleles. With the aim to complete the previous investigation about the stability of the Fragile X CGG repeat in Basque valleys, we also analyzed the existence of potentially unstable alleles, not only in relation with size and purity of CGG repeat but also in relation with DXS548 and FRAXAC1 haplotypes implicated in repeat instability. The data show that differences in allele frequencies as well as in the distribution of the mutational pathways previously identified are present among Basques. The data also suggest that compared with the analyzed Basque valleys, Gernika had increased frequency of susceptibility to instability alleles, although the prevalence of premutation and intermediate/grey zone alleles in all the analyzed valleys was lower than that reported in Caucasian populations.Key Words: Fragile X syndrome, FMR1 gene, CGG repeat, FRAXAC1, DXS548, basque country.  相似文献   

13.
Summary The fragile X syndrome is one of the most common familial causes of mental retardation. It is associated with the expression of a fragile site at Xq27.3, although not all individuals carrying the mutation are fragile-X-positive. Recently, the mutation causing this disease has been identified as the amplification of, or insertion into, a CGG repeat sequence at the fragile site. The mutated chromosome can be recognised by the decrease in mobility of the EcoRI fragment that covers the mutated region. Analysis of lymphocytes of affected males often gives a number of different sized fragments indicating somatic heterogeneity. We have investigated this mosaicism in various tissues of an affected fetus in order to determine the extent of the variation between tissues, and to ascertain how to interpret the results in lymphocytes. Our results suggest that the heterogeneity occurs in all fetal tissues, but that the pattern of fragments observed varies between tissues. Methylation across the region also varies. These differences may be reflected in the cellular phenotypes and may influence the ultimate expression of the clinical phenotype.  相似文献   

14.
High-resolution cytogenetic analysis of a large number of women with premature ovarian failure (POF) identified six patients carrying different Xq chromosome rearrangements. The patients (one familial and five sporadic cases) were negative for Turner's stigmata and experienced a variable onset of menopause. Microsatellite analysis and fluorescent in situ hybridization (FISH) were used to define the origin and precise extension of the Xq anomalies. All of the patients had a Xq chromosome deletion as the common chromosomal abnormality, which was the only event in three cases and was associated with partial Xp or 9p trisomies in the remaining three. Two of the Xq chromosome deletions were terminal with breakpoints at Xq26.2 and Xq21.2, and one interstitial with breakpoints at Xq23 and Xq28. In all three cases, the del(X)s retained Xp and Xq specific telomeric sequences. One patient carries a psu dic(X) with the deletion at Xq22.2 or Xq22.3; the other two [carrying (X;X) and (X;9) unbalanced translocations, respectively] showed terminal deletions with the breakpoint at Xq22 within the DIAPH2 gene. Furthermore, the rearranged X chromosomes were almost totally inactivated, and the extent of the Xq deletions did not correlate with the timing of POF. In agreement with previous results, these findings suggest that the deletion of a restricted Xq region may be responsible for the POF phenotype. Our analysis indicates that this region extends from approximately Xq26.2 (between markers DXS8074 and HIGMI) to Xq28 (between markers DXS 1113 and ALD) and covers approximately 22 Mb of DNA. These data may provide a starting point for the identification of the gene(s) responsible for ovarian development and folliculogenesis.  相似文献   

15.
High resolution cytogenetics, microsatellite marker analyses, and fluorescence in situ hybridization were used to define Xq deletions encompassing the fragile X gene, FMR1, detected in individuals from two unrelated families. In Family 1, a 19-year-old male had facial features consistent with fragile X syndrome; however, his profound mental and growth retardation, small testes, and lover limb skeletal defects and contractures demonstrated a more severe phenotype, suggestive of a contiguous gene syndrome. A cytogenetic deletion including Xq26.3–q27.3 was observed in the proband, his phenotypically normal mother, and his learning-disabled non-dysmorphic sister. Methylation analyses at the FMR1 and androgen receptor loci indicated that the deleted X was inactive in > 95% of his mother’s white blood cells and 80–85% of the sister’s leukocytes. The proximal breakpoint for the deletion was approximately 10 Mb centromeric to FMR1, and the distal breakpoint mapped 1 Mb distal to FMR1. This deletion, encompassing ∼13 Mb of DNA, is the largest deletion including FMR1 reported to date. In the second family, a slightly smaller deletion was detected. A female with moderate to severe mental retardation, seizures, and hypothyroidism, had a de novo cytogenetic deletion extending from Xq26.3 to q27.3, which removed ∼12 Mb of DNA around the FMR1 gene. Cytogenetic and molecular data revealed that ∼50% of her white blood cells contained an active deleted X. These findings indicate that males with deletions including Xq26.3–q27.3 may exhibit a more severe phenotype than typical fragile X males, and females with similar deletions may have an abnormal phenotype if the deleted X remains active in a significant proportion of the cells. Thus, important genes for intellectual and neurological development, in addition to FMR1, may reside in Xq26.3–q27.3. One candidate gene in this region, SOX3, is thought to be involved in neuronal development and its loss may partly explain the more severe phenotypes of our patients. Received: 19 December 1996 / Accepted: 13 March 1997  相似文献   

16.
The prenatal cytogenetic study of an amniotic fluid sample of a 39-year-old female showed one X chromosome with a fragment of extra material in the short arm. The G-band pattern suggested that the extra material could be the long arm of an X chromosome. Several complementary studies were performed in order to better clarify the origin of the material. These studies included parental karyotypes, microsatellite typing and comparative genomic hybridization (CGH). The results obtained allowed us to conclude that the derivative chromosome arose de novo as a recombinant X chromosome with duplication of Xq and partial deletion of Xp. Once informed, the parents decided to continue with the pregnancy, after which a healthy girl was born with no apparent disorders.  相似文献   

17.
18.
Repeated DNA sequences in the distal long arm of the human X chromosome   总被引:1,自引:1,他引:0  
Summary Two DNA probes from within a single large insert from a recombinant phage-DNA library that was constructed from flow-sorted chromosomes enriched for the human X chromosome were shown to hybridize with repeated X-specific and autosomal DNA sequences. The X-chromosomal repeated sequences were assigned to the distal long arm of the X chromosome by both hybrid mapping and in situ hybridization. Fine mapping places these repeats in a region of Xq28 between DX13 (DXS15, in distal Xq28) and factor VIII (F8C, in proximal Xq28). The location of the X-specific repeats makes them potentially useful for future investigations of discases mapping to the distal long arm of the X chromosome, such as the fragile X syndrome.  相似文献   

19.
For many years, the high prevalence of the fragile X syndrome was thought to be caused by a high mutation frequency. The recent isolation of the FMR1 gene and identification of the most prevalent mutation enable a more precise study of the fragile X mutation. As the vast majority of fragile X patients show amplification of an unstable trinucleotide repeat, DNA studies can now trace back the origin of the fragile X mutation. To date, de novo mutations leading to amplification of the CGG repeat have not yet been detected. Recently, linkage disequilibrium was found in the Australian and US populations between the fragile X mutation and adjacent polymorphic markers, suggesting a founder effect of the fragile X mutation. We present here a molecular study of Belgian and Dutch fragile X families. No de novo mutations could be found in 54 of these families. Moreover, we found significant (P < 0.0001) linkage disequilibrium in 68 unrelated fragile X patients between the fragile X mutation and an adjacent polymorphic microsatellite at DXS548. This suggests that a founder effect of the fragile X mutation also exists in the Belgian and Dutch populations. Both the absence of new mutations and the presence of linkage disequilibrium suggest that a few ancestral mutations are responsible for most of the patients with fragile X syndrome.  相似文献   

20.
560 blood samples collected from mentally retarded children in Taipei were karyotypically analyzed for the incidence of fragile X and other chromosome abnormalities. The fragile site at Xq27.3 was observed in 18 patients (3.21%), 11 males and 7 females, out of the 560 blood cultures using M medium. Down syndrome (6.25%), 24 males and 11 females, was the other major category of abnormality. Other abnormalities, including inversion, translocation, deletion, duplication, ring as well as an extra marker chromosome were observed. The overall incidence of chromosomal abnormalities in these children was 14.82%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号