首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mammalian nuclear pore complex (NPC) is comprised of approximately 50 unique proteins, collectively known as nucleoporins. Through fractionation of rat liver nuclei, we have isolated >30 potentially novel nucleoporins and have begun a systematic characterization of these proteins. Here, we present the characterization of Nup96, a novel nucleoporin with a predicted molecular mass of 96 kD. Nup96 is generated through an unusual biogenesis pathway that involves synthesis of a 186-kD precursor protein. Proteolytic cleavage of the precursor yields two nucleoporins: Nup98, a previously characterized GLFG-repeat containing nucleoporin, and Nup96. Mutational and functional analyses demonstrate that both the Nup98-Nup96 precursor and the previously characterized Nup98 (synthesized independently from an alternatively spliced mRNA) are proteolytically cleaved in vivo. This biogenesis pathway for Nup98 and Nup96 is evolutionarily conserved, as the putative Saccharomyces cerevisiae homologues, N-Nup145p and C-Nup145p, are also produced through proteolytic cleavage of a precursor protein. Using immunoelectron microscopy, Nup96 was localized to the nucleoplasmic side of the NPC, at or near the nucleoplasmic basket. The correct targeting of both Nup96 and Nup98 to the nucleoplasmic side of the NPC was found to be dependent on proteolytic cleavage, suggesting that the cleavage process may regulate NPC assembly. Finally, by biochemical fractionation, a complex containing Nup96, Nup107, and at least two Sec13- related proteins was identified, revealing that a major sub-complex of the NPC is conserved between yeast and mammals.  相似文献   

2.
Nup145p is an essential yeast nucleoporin involved in nuclear export of polyadenylated RNAs. We demonstrate here that Nup145p is cleaved in vivo to yield two functionally distinct domains: a carboxy-terminal domain (C-Nup145p) which is located at the nuclear pore complex (NPC) and assembles into the Nup84p complex, and a GLFG-containing amino-terminal domain (N-Nup145p) which is not part of this complex. Whereas the essential C-Nup145p accomplishes the functions required for efficient mRNA export and normal NPC distribution, N-Nup145p, which is homologous to the GLFG-containing nucleoporins Nup100p and Nup116p, is not necessary for cell growth. However, the N-Nup145p becomes essential in a nup188 mutant background. Strikingly, generation of a free N-domain is a prerequisite for complementation of this peculiar synthetic lethal mutant. These data suggest that N- and C-domains of Nup145p perform independent functions, and that the in vivo cleavage observed is of functional importance.  相似文献   

3.
W S Blair  X Li    B L Semler 《Journal of virology》1993,67(4):2336-2343
The production of poliovirus capsid proteins from a capsid protein precursor (P1) is mediated by virus-encoded proteinase 3CD and involves a complicated set of proteinase-substrate interactions. In addition to substrate and enzymatic determinants required for this interaction, we describe a cellular cofactor, which facilitates 3CD recognition of the P1 precursor. Cellular cofactor activity is 3CD dependent and salt dependent. Our analysis shows that proteolytic cleavage of the P1 precursor at the VP0/VP3 cleavage site exhibits a greater dependency on the cellular cofactor than cleavage at the VP3/VP1 site. Such a greater dependency on cellular cofactor activity can be relieved (in part) by the substitution of an Ala residue for the Pro residue at the -4 position of the VP0/VP3 cleavage site. However, mutant viruses containing Pro-to-Ala substitutions at the -4 position of the VP0/VP3 site exhibit defects in viral growth.  相似文献   

4.
The requirement for the glycine residue at the COOH terminus of the signal peptide of the precursor of the major Escherichia coli outer membrane lipoprotein was examined. Using oligonucleotide-directed site-specific mutagenesis, this residue was replaced by residues of increasing side chain size. Substitution by serine had no effect on the modification or processing of the prolipoprotein. Substitution by valine or leucine resulted in the accumulation of the unmodified precursor, whereas threonine substitution resulted in slow lipid modification and no detectable processing of the lipid modified precursor. The results indicate that serine is the upper limit on size for the residue at the cleavage site. Larger residues at this position prevent the action of both the glyceride transferase and signal peptidase II enzymes, indicating that the cleavage site residue plays a role in events prior to proteolytic cleavage. The upper limit on size of the cleavage site residue is similar to that found for exported proteins cleaved by signal peptidase I, as well as eucaryotic exported proteins. The possibility that the cleavage site residue may have a role other than active site recognition by the signal peptidase is discussed.  相似文献   

5.
The vertebrate nucleoporin Nup98 can be expressed in two distinct forms from differentially spliced mRNAs, either as a 98-kDa protein or as the 195-kDa Nup98/Nup96 polyprotein. Both forms undergo autoproteolytic processing to generate the 90-kDa Nup98 and either an 8-kDa tail or the nucleoporin Nup96. An equivalent cleavage event occurs in one yeast ortholog, Nup145, to produce Nup145N and Nup145C. We previously proposed that Nup145N, and possibly the other orthologs Nup116 and Nup100, might bind to Nup145C as demonstrated for Nup98 and Nup96. Here we have further investigated the interaction of both yeast and vertebrate Gly-Leu-Phe-Gly nucleoporins with the nuclear pore. We find that dynamic Nup98 binding can be recapitulated in vitro and that simultaneous translation and folding as a polyprotein are not required to allow subsequent binding between Nup98 and Nup96. We show that Nup145N and Nup145C do indeed bind to each other, and we have determined the dissociation constants for these interactions in vitro. Additionally, we characterize two sites of molecular interaction for each binding pair. Of the yeast orthologs, Nup116 binds far less robustly to Nup145C than does Nup145N, and Nup100 binding is barely detectable. Thus, we conclude that Nup116 and Nup100 likely use means of incorporation into the nuclear pore complex that are distinct from those used by Nup145N.  相似文献   

6.
The MET proto-oncogene encodes a 190-kDa disulfide-linked heterodimeric receptor (p190 alpha beta) whose tyrosine kinase activity is triggered by the hepatocyte growth factor. The mature receptor is made of two subunits: an alpha chain of 50 kDa and a beta chain of 145 kDa, arising from proteolytic cleavage of a single-chain precursor of 170 kDa (pr170). In a colon carcinoma cell line (LoVo), the precursor is not cleaved and the Met protein is exposed at the cell surface as a single-chain polypeptide of 190 kDa (p190NC). The expression of the uncleaved Met protein is due to defective posttranslational processing, since in this cell line (i) the proteolytic cleavage site Lys-303-Arg-Lys-Lys-Arg-Ser-308 is present in the precursor, (ii) p190NC is sensitive to mild trypsin digestion of the cell surface, generating alpha and beta chains of the correct size, and (iii) the 205-kDa insulin receptor precursor is not cleaved as well. p190NC is a functional tyrosine kinase in vitro and is activated in vivo, as shown by constitutive autophosphorylation on tyrosine. The MET gene is neither amplified nor rearranged in LoVo cells. Overlapping cDNA clones selected from a library derived from LoVo mRNA were sequenced. No mutations were present in the MET-coding region. These data indicate that the tyrosine kinase encoded by the MET proto-oncogene can be activated as a consequence of a posttranslational defect.  相似文献   

7.
Autocatalytic proteolytic cleavage is a frequently observed post-translational modification in proteins. Cephalosporin acylase (CA) is a recently identified member of the N-terminal hydrolase family that is activated from an inactive precursor by autoproteolytic processing, generating a new N-terminal residue, which is either a Ser or a Thr. The N-terminal Ser or Thr becomes a nucleophilic catalytic center for intramolecular and intermolecular amide cleavages. The gene structure of the open reading frame of CAs generally consists of a signal peptide followed by the alpha-subunit, a spacer sequence, and the beta-subunit, which are all translated into a single polypeptide chain, the CA precursor. The precursor is post-translationally modified into an active heterodimeric enzyme with alpha- and beta-subunits, first by intramolecular cleavage and second by intermolecular cleavage. We solved the first CA precursor structure (code 1KEH) from a class I CA from Pseudomonas diminuta at a 2.5-A resolution that provides insight into the mechanism of intramolecular cleavage. A conserved water molecule, stabilized by four hydrogen bonds in unusual pseudotetrahedral geometry, plays a key role to assist the OG atom of Ser(1beta) to generate a strong nucleophile. In addition, the site of the secondary intermolecular cleavage of CA is proposed to be the carbonyl carbon of Gly(158alpha) (Kim, S., and Kim, Y., (2001) J. Biol. Chem., 276, 48376-48381), which is different from the situation in two other class I CAs.  相似文献   

8.
Mitochondrial uptake of the cytoplasmically synthesized precursor of the mammalian enzyme ornithine transcarbamylase is mediated by an N-terminal leader sequence of 32 amino acids. In the mitochondrial matrix, the precursor form is processed to the mature subunit by proteolytic removal of this pre-sequence and in the enzyme from rat liver it has been suggested that this occurs in a two-step process which involves an intermediate cleavage at residue 24. We show that deletion of residues 20-26 spanning this intermediate cleavage site prevents correct processing to the mature subunit but it does not prevent mitochondrial targeting and internalization or assembly of the incorrectly processed product into a catalytically active enzyme. The incorrectly processed enzyme, which is larger than the normal mature enzyme, is nevertheless more susceptible to proteolytic degradation in permanently transfected human cells than the correctly processed enzyme.  相似文献   

9.
Amino acid sequence data from vicilin of pea (Pisum sativum L.) were compared with predicted sequences from complementary DNA species. The sites of potential post-translational proteolytic cleavage of vicilin precursor polypeptides were located in polar regions of the polypeptide, at acidic or amide residues. Proteolysis did not take place in precursors containing a functionally distinct sequence: neutral residue-hydrophobic residue-basic residue at the cleavage site. Differences between the genomic sequences encoding vicilin thus specify proteolytic cleavage of vicilin precursor polypeptides.  相似文献   

10.
Post-translational cleavage at the G protein-coupled receptor proteolytic site (GPS) has been demonstrated in many class B2 G protein-coupled receptors as well as other cell surface proteins such as polycystin-1. However, the mechanism of the GPS proteolysis has never been elucidated. Here we have characterized the cleavage of the human EMR2 receptor and identified the molecular mechanism of the proteolytic process at the GPS. Proteolysis at the highly conserved His-Leu downward arrow Ser(518) cleavage site can occur inside the endoplasmic reticulum compartment, resulting in two protein subunits that associate noncovalently as a heterodimer. Site-directed mutagenesis of the P(+1) cleavage site (Ser(518)) shows an absolute requirement of a Ser, Thr, or Cys residue for efficient proteolysis. Substitution of the P(-2) His residue to other amino acids produces slow processing precursor proteins, which spontaneously hydrolyze in a defined cell-free system. Further biochemical characterization indicates that the GPS proteolysis is mediated by an autocatalytic intramolecular reaction similar to that employed by the N-terminal nucleophile hydrolases, which are known to activate themselves by self-catalyzed cis-proteolysis. We propose here that the autoproteolytic cleavage of EMR2 represents a paradigm for the other GPS motif-containing proteins and suggest that these GPS proteins belong to a cell surface receptor subfamily of N-terminal nucleophile hydrolases.  相似文献   

11.
A cDNA clone encoding the 3CD proteinase (3CDpro) of poliovirus type 2 (Sabin), the precursor to proteinase 3Cpro and RNA polymerase 3Dpol, was expressed in bacteria by using a T7 expression system. Site-specific mutagenesis of the 3C/3D cleavage site was performed to generate active proteolytic precursors impaired in their ability to process themselves to 3Cpro and 3Dpol. Of these mutations, the exchange of the Thr residue at the P4 position of the 3C/3D cleavage site for a Lys residue (3CDpro T181K) resulted in a mutant polypeptide exhibiting the smallest amount of autoprocessing. This mutant was purified to 86% homogeneity and used for subsequent proteolytic studies. Purified 3CDproM (M designates the cleavage site mutant 3CDpro T181K) was capable of cleaving the P1 capsid precursor, a peptide representing the 2BC cleavage site, and the 2BC precursor polypeptide. Purified 3CDproM demonstrated the same detergent sensitivity in processing experiments with the capsid precursor as was observed by using P1 and crude extracts of poliovirus-infected HeLa cell lysates. Purified 3CDproM did not have any detectable RNA polymerase activity, whereas 3Dpol, separated from 3CDproM by gel filtration in the last step of purification, did. We conclude that 3CDproM can process both structural and nonstructural precursors of the poliovirus polyprotein and that it is active against a synthetic peptide substrate. Moreover, cleavage of 3CD to 3Dpol is needed to activate the 3D RNA polymerase.  相似文献   

12.
13.
The Nup84p complex consists of five nucleoporins (Nup84p, Nup85p, Nup120p, Nup145p-C, and Seh1p) and Sec13p, a bona fide subunit of the COPII coat complex. We show that a pool of green fluorescent protein-tagged Sec13p localizes to the nuclear pores in vivo, and identify sec13 mutant alleles that are synthetically lethal with nup85Delta and affect the localization of a green fluorescent protein-Nup49p reporter protein. In the electron microscope, sec13 mutants exhibit structural defects in nuclear pore complex (NPC) and nuclear envelope organization. For the assembly of the complex, Nup85p, Nup120p, and Nup145p-C are essential. A highly purified Nup84p complex was isolated from yeast under native conditions and its molecular mass was determined to be 375 kD by quantitative scanning transmission electron microscopy and analytical ultracentrifugation, consistent with a monomeric complex. Furthermore, the Nup84p complex exhibits a Y-shaped, triskelion-like morphology 25 nm in diameter in the transmission electron microscope. Thus, the Nup84p complex constitutes a paradigm of an NPC structural module with distinct composition, structure, and a role in nuclear mRNA export and NPC bio- genesis.  相似文献   

14.
Differences in virion RNA dimer stability between mature and protease-defective (immature) forms of human immunodeficiency virus type 1 (HIV-1) suggest that maturation of the viral RNA dimer is regulated by the proteolytic processing of the HIV-1 Gag and Gag-Pol precursor proteins. However, the proteolytic processing of these proteins occurs in several steps denoted primary, secondary, and tertiary cleavage events and, to date, the processing step associated with formation of stable HIV-1 RNA dimers has not been identified. We show here that a mutation in the primary cleavage site (p2/nucleocapsid [NC]) hinders formation of stable virion RNA dimers, while dimer stability is unaffected by mutations in the secondary (matrix/capsid [CA], p1/p6) or a tertiary cleavage site (CA/p2). By introducing mutations in a shared cleavage site of either Gag or Gag-Pol, we also show that the cleavage of the p2/NC site in Gag is more important for dimer formation and stability than p2/NC cleavage in Gag-Pol. Electron microscopy analysis of viral particles shows that mutations in the primary cleavage site in Gag but not in Gag-Pol inhibit viral particle maturation. We conclude that virion RNA dimer maturation is dependent on proteolytic processing of the primary cleavage site and is associated with virion core formation.  相似文献   

15.
The vertebrate nuclear pore is an enormous structure that spans the double membrane of the nuclear envelope. In yeast, most nucleoporins are found symmetrically on both the nuclear and cytoplasmic sides of the structure. However, in vertebrates most nucleoporins have been localized exclusively to one side of the nuclear pore. Herein, we show, by immunofluorescence and immunoelectron microscopy, that Nup98 is found on both sides of the pore complex. Additionally, we find that the pore-targeting domain of Nup98 interacts directly with the cytoplasmic nucleoporin Nup88, a component of the Nup214, Nup88, Nup62 subcomplex. Nup98 was previously described to interact with the nuclear-oriented Nup160, 133, 107, 96 complex through direct binding to Nup96. Interestingly, the same site within Nup98 is involved in binding to both Nup88 and Nup96. Autoproteolytic cleavage of the Nup98 C terminus is required for both of these binding interactions. When cleavage is blocked by a point mutation, a minimal eight amino acids downstream of the cleavage site is sufficient to prevent most binding to either Nup96 or Nup88. Thus, Nup98 interacts with both faces of the nuclear pore, a localization in keeping with its previously described nucleocytoplasmic shuttling activity.  相似文献   

16.
In retroviruses, the viral protease (PR) is released as a mature protein by cleavage of Gag, Gag-Pro, or Gag-Pro-Pol precursor polypeptides. In avian sarcoma and leukemia viruses (ASLV), PR forms the C-terminal domain of Gag. Based on the properties of a mutation (cs22) in the cleavage site between the upstream NC domain and the PR domain, the proteolytic liberation of PR previously was inferred to be essential for processing of Gag and Pol proteins. To study this process in more detail, we have analyzed the effects that several mutations at the NC-PR cleavage site have on proteolytic processing in virus-like particles expressed in COS and quail cells. Mutant Gag proteins carrying the same mutations also were synthesized in vitro and tested for processing with purified PR. In both types of studies, N-terminal sequencing of the liberated PR domain was carried out to exactly identify the site of cleavage. Finally, synthetic peptides corresponding to the mutant proteins were assessed for the ability to act as substrates for PR. The results were all consistent and led to the following conclusions. (i) In vivo, if normal processing between NC and PR is prevented by mutations, limited cleavage occurs at a previously unrecognized alternative site three amino acids downstream, i.e., in PR. This N-terminally truncated PR is inactive as an enzyme, as inferred from the global processing defect in cs22 and a similar mutant. (ii) In Gag proteins translated in vitro, purified PR cleaves this alternative site as rapidly as it does the wild-type site. (iii) Contrary to previously accepted rules describing retroviral cleavage sites, an isoleucine residue placed at the P1 position of the NC-PR cleavage site does not hinder normal processing. (iv) A proline residue placed at the P2 position in this cleavage site blocks normal processing.  相似文献   

17.
Dystroglycan is a component of the dystrophin glycoprotein complex that is cleaved into two polypeptides by an unidentified protease. To determine the role of post-translational processing on dystroglycan synthesis and trafficking we expressed the dystroglycan precursor and mutants thereof in a heterologous system. A point mutant in the processing site, S655A, prevented proteolytic cleavage but had no effect upon the surface localisation of dystroglycan. Mutation of two N-linked glycosylation sites that flank the cleavage site inhibited proteolytic processing of the precursor. Furthermore, chemical inhibition of N- and O-linked glycosylation interfered with the processing of the precursor and reduced the levels of dystroglycan at the cell surface. Dystroglycan processing was also inhibited by the proteasome inhibitor lactacystin. N-linked glycosylation is a prerequisite for efficient proteolytic processing and cleavage and glycosylation are dispensable for cell surface targeting of dystroglycan.  相似文献   

18.
A new specific endopeptidase that cleaves eukaryotic precursor proteins has been found in Escherichia coli K but not in E. coli B strains. After purification, protein sequencing and Western blotting, the endopeptidase was shown to be identical with E. coli outer membrane protein OmpP [Kaufmann, A., Stierhof, Y.-D. & Henning, U. (1994) J. Bacteriol. 176, 359-367]. Further characterization of enzymatic properties of the new peptidase was performed. Comparison of the cleavage specificities of the newly found endopeptidase and that of rat mitochondrial processing peptidase (MPP) showed that patterns of proteolytic cleavage on the investigated precursor proteins by both enzymes are similar. By using three mitochondrial precursor proteins, the specificity assigned to OmpP previously, a cleavage position between two basic amino-acid residues, was extended to a three amino-acid recognition sequence. Positions +1 to +3 of this extended recognition site consist of an amino-acid residue with a small aliphatic side chain such as alanine or serine, a large hydrophobic residue such as leucine or valine followed by an arginine residue. Additionally, structural motifs of the substrate seem to be required for OmpP cleavage.  相似文献   

19.
The structural proteins of murine type C retroviruses are proteolytic cleavage products of two different precursor polyproteins coded by the viral gag and env genes. To further investigate the nature and number of proteolytic cleavages involved in virus maturation, we quantitatively isolated the structural proteins of the Rauscher and Moloney strains of type C murine leukemia virus (R-MuLV and M-MuLV, respectively) by reversed-phase high-pressure liquid chromatography. Proteins and polypeptides isolated from R-MuLV included p10, p12, p15, p30, p15(E), gp69, and gp71 and three previously undescribed virus components designated here as p10', p2(E), and p2(E). Homologous proteins and polypeptides were isolated from M-MuLV. Complete or partial amino acid sequences of all the proteins listed above were either determined in this study or were available in previous reports from this laboratory. These data were compared with those from the translation of the M-MuLV proviral DNA sequence (Shinnick et al., Nature [London] 293:543-548, 1981) to determine the exact nature of proteolytic cleavages for all the structural proteins described above and to determine the origin of p10' and p2(E)s. The results showed that, during proteolytic processing of gp80env from M-MuLV (M-gp 80env), a single Arg residue was excised between gp70 and p15(E) and a single peptide bond was cleaved between p15(E) and p2(E). The structure of M-gPr80env is gp70-(Arg)-p15(E)-p2(E). The data suggest that proteolytic cleavage sites in R-gp85env are identical to corresponding cleavage sites in M-gp80env. The p2(E)s are shown to be different genetic variants of p2(E) present in the uncloned-virus preparations. The data for R- and M-p10's shows that they are cleavage products of the gag precursor with the structure p10-Thr-Leu-Asp-Asp-OH. The complete structure of Pr65gag is p15-p12-p30-p10'. Stoichiometries of the gag and env cleavage products in mature R- and M-MuLV were determined. In each virus, gag cleavage products (p15, p12, p30, and p10 plus p10') were found in equimolar amounts and p15(E)s were equimolar with p2(E)s. The stoichiometry of gag to env cleavage products was 4:1. These data are consistent with the proposal that proteolytic processing of precursor polyproteins occurs after virus assembly and that the C-terminal portion of Pr15(E) [i.e., p15(E)-p2(E)] is located on the inner side of the lipid bilayer of the virus.  相似文献   

20.
《Seminars in Virology》1996,7(4):237-243
Infectivity, tropism, spread, and pathogenicity of influenza viruses are based on the interplay between the fusogenic glycoproteins and appropriate host endoproteases. The hemagglutinin (HA) of influenza A and B viruses and the HEF (hemagglutinating, esterase, fusion) glycoprotein of influenza C virus receive their full biological activity by proteolytic cleavage of a precursor molecule at a definite cleavage site. The amino acid motifs at the cleavage site and the availability of suitable proteases are critical for the clinical manifestation of the infection. Prototype cleavage proteases, including bacterial enzymes, are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号