首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Mucor miehei lipase was used to catalyse the esterification reaction between propionic acid and oleyl alcohol in reversed micelles of AOT in isooctane. Small-scale model studies were performed to study the influence of various parameters on the formation of oleyl propionate by this lipase. The maximum synthetic activity was obtained at w0 = 4.0. At high temperatures (65°C) the enzyme displays a better stability for a low water content (w0 = 3.3). The specificity of lipase was influenced by the solubilized water in the reversed micelles.  相似文献   

2.
The effects of surfactant concentration on the hydrolytic activity of Candida rugosa lipase in AOT/isooctane reverse micelles with olive oil as the substrate has been investigated. A noncompetitive inhibition by the surfactant on the enzyme was observed. Strong dependences of the kinetic constants kcat and kM, but not kI on the water-to-surfactant ratio (R value) have been identified. The benefits of carrying out the hydrolysis at higher surfactant and water concentrations were demonstrated from the improvement of the initial rate and time course of conversion.  相似文献   

3.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5 h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3 h) and [omim]PF6 (10.6 h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

4.
Alkaline p-nitrophenylphosphate phosphatase (pNPPase) from the halophilic archaeon Halobacterium salinarum (previously halobium) was solubilized in reversed micelles of cetyltrimethylammonium bromide (CTAB) in cyclohexane with 1-butanol as cosurfactant. The hydrolysis reaction appears to follow Michaelis–Menten kinetics. The dependency of the maximum reaction rate (Vmax) on the water content θ (% v/v) (or ω0 value: molar ratio of water to surfactant concentrations) showed a bell-shaped curve for 0.3 M CTAB, but not for 0.2 M CTAB. The enzyme activity increased with the surfactant concentration at a constant ω0 value (10.27). When the surfactant concentration was increased at a constant θ, the enzyme activity decreased. The enzyme was more stable in reversed micelles than in aqueous media.  相似文献   

5.
The present study compares the results of three different covalent immobilization methods employed for immobilization of lipase from Candida rugosa on Eupergit® C supports with respect to enzyme loadings, activities and coupling yields. It seems that method yielding the highest activity retention of 43.3% is based on coupling lipase via its carbohydrate moiety previously modified by periodate oxidation. Study of thermal deactivation kinetics at three temperatures (37, 50 and 75 °C) revealed that the immobilization method also produces an appreciable stabilization of the biocatalyst, changing its thermal deactivation profile. By comparison of the t1/2 values obtained at 75 °C, it can be concluded that the lipase immobilized via carbohydrate moiety was almost 2-fold more stable than conventionally immobilized one and 18-fold than free lipase. The immobilization procedure developed is quite simple, and easily reproduced, and provides a promising solution for application of lipase in aqueous and microaqueous reaction system.  相似文献   

6.
Lipases from Candida rugosa, Candida antartica B and Carica papaya are employed as the biocatalyst for the hydrolytic resolution of methyl 2-fluoro-2-arylpropionates in water-saturated isooctane, in which excellent to good enantioselectivity without the formation of byproducts is obtained for the papaya lipase when using (R,S)-2-fluoronaproxen methyl ester (1) and methyl (R,S)-2-fluoro-2-(4-methoxyphenyl)propionate (2), but not methyl (R,S)-2-fluoro-2-(naphth-1-yl)propionate (3) as the substrates. The thermodynamic analysis indicates that the enantiomer discrimination for the papaya lipase is driven by the difference in activation enthalpy for compound 1, 2 or (R,S)-naproxen methyl ester (4). The kinetic analysis also demonstrates that in comparison with (S)-4, the insertion of the 2-fluorine moiety in (R)-1 has increased k2, but not Km, and consequently the lipase activity.  相似文献   

7.
In this study the effect of the water concentration on a crystallized enzyme of Candida antarctica lipase B (ChiroCLEC™-CAB) in supercritical carbon dioxide (scCO2) is studied. The model reaction used is the enantioselective esterification of racemic 1-phenyl ethanol with vinyl acetate; the reaction is performed in scCO2 at 40 °C and 90 bar in batch and in continuous operation. Kinetic parameters have been derived from continuous experiments, leading to a catalytic turnover number of 0.95 s−1. The optimum activity is reached at low water concentrations (0.05 g L−1). At lower concentrations, CO2 is stripping water from the enzyme leading to deactivation. However, adding a small amount of water to the substrates can reverse this deactivation and the enzyme activity is restored.  相似文献   

8.
Reverse micelles were used as a cytoplasmic model to study the kinetics of an extreme halophilic enzyme such as the recombinant glucose dehydrogenase from the Archaeon Haloferax mediterranei. This enzyme was solubilized in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as co-surfactant. Glucose dehydrogenase retained its catalytic properties in this organic medium, showing good stability at low water content, even at low salt concentration (125 mM NaCl). The dependence of the enzymatic activity on the molar water surfactant ratio (w0=[H2O]/[surfactant]) increased with rising water content. Surprisingly, the activity of this extreme halophilic enzyme did not depend on the salt concentration in reverse micelles. The kinetic of the enzymatic oxidation of β-D-glucose to D-glucono-1,5-lactone using NADP+ as coenzyme for the glucose dehydrogenase from Haloferax mediterranei was also studied in the reverse micellar system.  相似文献   

9.
The modification of reverse micellar systems composed of AOT, isooctane, water by the addition of aprotic solvents has been performed. The impact of this change on the activity, stability and kinetics of solubilized Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3) was investigated. Of seven aprotic solvents tested, dimethyl sulfoxide (DMSO) was found to be most effective. It was found that lipase activity was enhanced by optimizing some relevant parameters, such as water–AOT molar ratio (W0), buffer pH and surfactant concentration. A kinetic model that considers the free substrate in equilibrium with the substrate adsorbed on the micellar surface was successfully used to deduce some kinetic parameters (Vmax, Km and Kad), and the values of Km and Kad were significantly reduced by the presence of DMSO. Higher lipase stability was found in AOT reverse micelles with DMSO compared with that in simple AOT systems with half-life of 125 and 33 days, respectively. Fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to elucidate the effects of DMSO on the properties of AOT reverse micelles.  相似文献   

10.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30-40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

11.
Tyrosinase activity in reversed micelles   总被引:1,自引:0,他引:1  
The hydroxylase and oxidase activities of mushroom tyrosinase were studied in both sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane and cetyltrimethylammonium bromide (CTAB)/hexane/chloroform reversed micelles. The enzyme presented its highest activity when the water to surfactant molar ratio (W 0) was 20 for both systems. When entrapped in the AOT reversed micelles, the enzyme activity decreased with the increase in AOT concentration at a constant W 0, and the enzyme not only presented a higher reaction rate related to its oxidase activity but also a shorter lag period related to its hydroxylase activity. The relation between water activity and W 0 revealed that enzyme activity in reversed micelles was more related to the size of the micelles which was determined by W 0 and less to the water activity. Tyrosinase in CTAB reversed micelles showed potential for the analysis of o-diphenols.  相似文献   

12.
The activities of horseradish peroxidase (HRP) and lactoperoxidase (LPO) entrapped in reverse micelles of Igepal CO-520 in cyclohexane were studied. When the molar ratio of water to surfactant, w 0 was ≥13, the activity of HRP encapsulated in the water pool of the reverse micelle was comparable with that measured in buffer. For LPO, however, lower activity was observed after its incorporation into the same system.

The activity of the investigated peroxidases was also measured in an aqueous solution of Igepal CO-720 or after incubation with this surfactant. The enzymes became inactivated in an aqueous micellar solution of Igepal CO-720, although this process was reversible.

The stability of HRP and LPO at 37 or 50°C was lower in the micellar systems than in buffer with the exception for HRP in reverse micelles at 50°C.  相似文献   

13.
Lipases from Candida rugosa, Mucor javanicus and Rhizopus oryzae were respectively adsorbed on Amberlite XAD-7 followed by incubation in 2-propanol and then lyophilization. The activities of the immobilized enzymes were 1.6–3.4 times higher than those of the immobilized enzymes without incubation in the organic solvent before lyophilization for esterification of lauric acid (0.1 M) and 1-propanol (0.1 M) in isooctane at 37 °C. The immobilized C. rugosa lipase (Sigma) without the incubation did not show any activity but displayed considerable activity (19.8 μmol h−1 mg−1) after the incubation before lyophilization. Besides 2-propanol, acetone, 1-propanol and ethyl acetate were also found to be good solvents for treating M. javanicus lipase immobilized on Amberlite XAD-7 and acetone was the best among them. When incubated in isooctane at 25 °C for 120 h, the immobilized M. javanicus lipase prepared by incubation in acetone for 1 h before lyophilization retained 70% of its initial activity while the immobilized enzyme without the solvent treatment kept only 50% of its initial activity.  相似文献   

14.
Candida rugosa lipase was entrapped in hybrid organic–inorganic sol-gel powder prepared by acid-catalyzed polymerization of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes, and used in catalyzing esterification reactions between ethanol and butyric acid in hexane. Optimum preparation conditions were studied, which are gels made from propyltrimethoxysilane (PTMS)/TMOS molar ratio=4:1, hydrolysis time of silane precursor=30 min, water/silane molar ratio=24, enzyme loading=6.25% (w/w) of gel, and 1 mg PVA/mg lipase. The percentage of protein immobilization was 95% and the resulting lipase specific activity was 59 times higher than that of a non-immobilized lyophilized lipase. To prepare magnetic lipase-immobilized sol-gel powder (MLSP) for easier recovery of the biocatalyst, Fe3O4 nanoparticles were prepared and co-entrapped with lipase during gel formation. This procedure induced surface morphological change of the sol-gel powder and showed adverse effect on enzyme activity. Hence, although only 9% decrease in protein immobilization efficiency was observed, the corresponding reduction in enzyme activity could be up to 45% when sol-gel powder was doped with 25% (v/v) Fe3O4 magnetic nanoparticles solution. Lipase-immobilized sol-gel polymer was also formed within the pores of different porous supports to improve its mechanical stability. Non-woven fabric, with a medium pore size of all the supports tested, was found to be the best support for this purpose. The thermal stability of lipase increased 55-fold upon entrapment in sol-gel materials. The half-lives of all forms of sol-gel-immobilized lipase were 4 months at 40 °C in hexane.  相似文献   

15.
The immobilization of lipase from Candida rugosa, using ionic liquids as additives to protect the inactivation of lipase by released alcohol and shrinking of gel during sol–gel process, was investigated. The influence of various factors, such as structure of ionic liquids, content of ionic liquids and types of precursor in the sol–gel process on the activity and stability of immobilized lipase was also studied. The highest hydrolytic activity of immobilized lipase was obtained when the hydrophilic ionic liquid, [C2mim][BF4], was used as an additive, while the highest stability of immobilized lipase was obtained by using hydrophobic ionic liquid, [C16mim][Tf2N]. Therefore, the binary mixtures of these ionic liquids as additives were used to obtain the optimal immobilized lipase, which shows both high activity and stability. The hydrolysis and esterification activities of lipase co-immobilized with the mixture of 1:1 at molar ratio of [C2mim][BF4] and [C16mim][Tf2N] were 10-fold and 14-fold greater than in silica gel without ionic liquids (ILs), respectively. After 5 days incubation of this immobilized lipase in n-hexane at 50 °C, 84% of initial activity was remained, while the residual activity of the lipase immobilized without ILs was 28%.  相似文献   

16.
The water activity dependence of lipase kinetics in organic media was evaluated using lipases from Rhizopus oryzae and Candida rugosa immobilised on polypropene EP-100. The conversion studied was the transesterification of ethyl decanoate to hexyl decanoate with hydrolysis to decanoic acid as competing reaction. The reactions were carried out at controlled water activity in diisopropyl ether. Substrate inhibition was observed at hexanol concentrations of 100 mM or higher. The Rhizopus lipase expressed the highest activity and the best selectivity for transesterification at the lowest water activity (aw=0.06). The Candida lipase expressed the highest transesterification/hydrolysis ratio at aw=0.11 and the highest total activity at aw=0.53. Several glycosidases previously tested under conditions similar to those used here expressed both maximal total activity and the best selectivity at water activities close to 1.0. The water activity dependence of the lipases is thus fundamentally different from that of glycosidases and it is a major part of the reason why lipases are more suited for transferase-type reactions than the glycosidases.  相似文献   

17.
Six commercial lipases, in either free or immobilized forms, were screened for their ability to catalyze acyl exchange between the triacylglycerols of butteroil (milkfat) and conjugated linoleic acid (CLA) in an organic solvent-free medium. Immobilized lipase preparations from Candida antarctica and Mucor miehei demonstrated the ability to increase the CLA content of the milk fat acylglycerols from the native value of 0.6 g/100 g fat to values which were at least an order of magnitude higher. Comparable increases were also obtained with a free enzyme from Candida rugosa.

In addition to the screening studies, the effects of the weight ratio of milkfat to CLA on the product distribution and of the water content on the kinetics and maximum extent of this acidolysis reaction were systematically investigated in a batch reactor: The fatty acids liberated from the butteroil triacylglycerols were primarily short chain fatty acids, especially butyric and caproic acids.

Modified butteroils were also produced via acidolysis of butteroil with CLA in a packed bed reactor containing an immobilized lipase preparation from C. antarctica. Significant enrichment of the butteroil in CLA residues was accomplished at reactor space times (fluid residence times) of 2–4 h at 40–60°C. Under these conditions, approximately 80–90% of the free CLA fed to the reactor is (inter)esterified.  相似文献   


18.
Candida rugosa lipase is a very useful catalyst, but its rapid inactivation by simple alcohols is a drawback. The present study was focussed on the encapsulation of this enzyme in silica aerogels reinforced with quartz fiber felt. The activity of the immobilized lipase in an organic solvent could be significantly improved over that of the free enzyme and of previous immobilization techniques, by evaporating the alcohol formed during a pre-hydrolysis of the silica precursor, before adding the aqueous enzyme solution. The alcohol evaporation technique was previously used by other authors to immobilized enzymes, but applied to xerogels dried by evaporation, while in the present case the wet gels obtained were dried by the CO2 supercritical method to obtain aerogels. Besides, such silica aerogels were also reinforced by impregnating a commercial ceramic quartz fiber felt of St. Gobain with the silica sol containing the enzyme, before gelation. The ceramic composites heterogeneous biocatalysts obtained could be used for a large number of times without any apparent deterioration.  相似文献   

19.
Candida rugosa lipase (EC 3.1.1.3.) was immobilized in a hydrophilic polyurethane foam and used in the hydrolysis of olive oil, in H-hexane. The results obtained were compared with those from a previous study, in which the same lipase preparation was used in the esterification of ethanol with butyric acid.

The initial rate of hydrolysis increased exponentially with increasing olive oil concentration. In contrast, for the esterification reaction, Michaelis-Menten kinetics with inhibition by both substrates, had been observed.

The effect of medium viscosity, stirring conditions and size of immobilization particles could not explain the observed kinetics of the hydrolytic reaction. However, a direct relationship was observed between the log P values of the reaction medium and the initial rate of hydrolysis, i.e., activation of the immobilized Candida rugosa lipase appears to be promoted by a high hydrophobicity of the reaction medium.

In the case of the esterification reaction, no similar correlation was found.  相似文献   

20.
Zirconium phosphate (ZrP), a low-cost inorganic material with well-defined physicochemical properties, was successfully used as support for immobilizing Candida rugosa lipase by covalent bonding. The immobilized derivative showed high catalytic activity in both aqueous and non-aqueous media. Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy measurements demonstrated that the ZrP fulfilled the morphological requirements for use as a matrix for immobilizing lipases. The free and immobilized lipases were compared in terms of pH, temperature and thermal stability. The immobilized lipase had a higher pH optimum (7.5) and higher optimum temperature (50°C) than the free lipase. Immobilization also increased the thermal stability. The hydrolysis of p-nitrophenyl palmitate (pNPP) by immobilized lipase, examined at 37°C, followed Michaelis-Menten kinetics. Values for Km=1.18 µM and Vmax=325Umg-1 indicated that the immobilized system was subject to mass transfer limitations. The immobilized derivative was also tested under repetitive reaction batches in both ester hydrolysis and synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号