首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.  相似文献   

5.
6.
Vibrio cholerae, the causative agent of cholera can produce an exopolysaccharide (EPS). Some strains can also phenotypically switch from a smooth to a 'rugose' phenotype characterized by small wrinkled colonies, overproduction of EPS, increased biofilm formation in vitro and increased resistance to various stressful conditions. High frequency switching to the rugose phenotype is more common in epidemic strains than in non-pathogenic strains, suggesting EPS production and the rugose phenotype are important in cholera epidemiology. VpsR up-regulates Vibrio polysaccharide (VPS) genes and the synthesis of extracellular EPS (VPS). However, the function of VPS, the rugose phenotype and VpsR in pathogenesis is not well understood. We report that rugose strains of both classical and El Tor biotypes of epidemic V. cholerae are defective in the in vitro production of extracellular collagenase activity. In vivo studies in rabbit ileal loops suggest that VpsR mutants are attenuated in reactogenicity. Intestinal colonization studies in infant mice suggest that VPS production, the rugose phenotype and VpsR have a role in pathogenesis. Our results indicate that regulated VPS production is important for promoting in vivo biofilm formation and pathogenesis. Additionally, VpsR might regulate genes with roles in virulence. Rugose strains appear to be a subpopulation of cells that might act as a 'helper' phenotype promoting the pathogenesis of certain strains. Our studies provide new insight into the potential role of VPS, the rugose phenotype and VpsR in the pathogenesis of epidemic V. cholerae.  相似文献   

7.
8.
9.
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.  相似文献   

10.
11.
Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS). In addition to negatively controlling vps genes, the global quorum sensing (QS) regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT) is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.  相似文献   

12.
群体感应(quorum sensing,QS)是指细胞感知周围同类细胞的多寡或密度并调控基因表达的系统,它对大多数细菌的生物膜形成至关重要。目前对霍乱弧菌的QS系统已有较深入的研究,该菌的群体感应系统通过HapR、LuxO等多种信号分子调控生物膜的形成及消散。干扰QS系统将成为治疗生物膜相关感染的新方向。  相似文献   

13.
The PhoBR regulatory system is required for the induction of multiple genes under conditions of phosphate limitation. Here, we examine the role of PhoB in biofilm formation and environmental stress response in Vibrio cholerae of the El Tor biotype. Deletion of phoB or hapR enhanced biofilm formation in a phosphate-limited medium. Planktonic and redispersed biofilm cells of the Δ phoB mutant did not differ from wild type for the expression of HapR, suggesting that PhoB negatively affects biofilm formation through an HapR-independent pathway. The Δ phoB mutant exhibited elevated expression of exopolysaccharide genes vpsA and vpsL compared with the wild type. Deletion of hapR enhanced the expression of the positive regulator vpsT , but had no effect on the expression of vpsR . In contrast, deletion of phoB enhanced the expression of the positive regulator vpsR , but had no effect on the expression of hapR and vpsT . The Δ phoB mutant was more sensitive to hydrogen peroxide compared with the wild type and with an isogenic Δ rpoS mutant. Conversely, the Δ phoB mutant was more resistant to acidic conditions and high osmolarity compared with the wild type and with an isogenic Δ rpoS mutant. Taken together, our data suggest that phosphate limitation induces V. cholerae to adopt a free-swimming life style in which PhoB modulates environmental stress response in a manner that differs from the general stress response regulator RpoS.  相似文献   

14.
Steps in the development of a Vibrio cholerae El Tor biofilm   总被引:8,自引:0,他引:8  
We report that, in a simple, static culture system, wild-type Vibrio cholerae El Tor forms a three-dimensional biofilm with characteristic water channels and pillars of bacteria. Furthermore, we have isolated and characterized transposon insertion mutants of V. cholerae that are defective in biofilm development. The transposons were localized to genes involved in (i) the biosynthesis and secretion of the mannose-sensitive haemagglutinin type IV pilus (MSHA); (ii) the synthesis of exopolysaccharide; and (iii) flagellar motility. The phenotypes of these three groups suggest that the type IV pilus and flagellum accelerate attachment to the abiotic surface, the flagellum mediates spread along the abiotic surface, and exopolysaccharide is involved in the formation of three-dimensional biofilm architecture.  相似文献   

15.
The newly recognized bacterial second messenger 3',5'-cyclic diguanylic acid (cyclic diguanylate (c-di-GMP)) has been shown to regulate a wide variety of bacterial behaviors and traits. Biosynthesis and degradation of c-di-GMP have been attributed to the GGDEF and EAL protein domains, respectively, based primarily on genetic evidence. Whereas the GGDEF domain was demonstrated to possess diguanylate cyclase activity in vitro, the EAL domain has not been tested directly for c-di-GMP phosphodiesterase activity. This study describes the analysis of c-di-GMP hydrolysis by an EAL domain protein in a purified system. The Vibrio cholerae EAL domain protein VieA has been shown to inversely regulate biofilm-specific genes (vps) and virulence genes (ctxA), presumably by decreasing the cellular pool of c-di-GMP. VieA was maximally active at neutral pH, physiological ionic strength, and ambient temperatures and demonstrated c-di-GMP hydrolytic activity with a Km of 0.06 microM. VieA was unable to hydrolyze cGMP. The putative metal coordination site of the EAL domain, Glu170, was demonstrated to be necessary for VieA activity. Furthermore, the divalent cations Mg2+ and Mn2+ were necessary for VieA activity; conversely, Ca2+ and Zn2+ were potent inhibitors of the VieA phosphodiesterase. Calcium inhibition of the VieA EAL domain provides a potential mechanism for regulation of c-di-GMP degradation.  相似文献   

16.
Clostridium difficile infections have become a major healthcare concern in the last decade during which the emergence of new strains has underscored this bacterium's capacity to cause persistent epidemics. c-di-GMP is a bacterial second messenger regulating diverse bacterial phenotypes, notably motility and biofilm formation, in proteobacteria such as Vibrio cholerae, Pseudomonas aeruginosa, and Salmonella. c-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a conserved GGDEF domain. It is degraded by phosphodiesterases (PDEs) that contain either an EAL or an HD-GYP conserved domain. Very little is known about the role of c-di-GMP in the regulation of phenotypes of Gram-positive or fastidious bacteria. Herein, we exposed the main components of c-di-GMP signalling in 20 genomes of C. difficile, revealed their prevalence, and predicted their enzymatic activity. Ectopic expression of 31 of these conserved genes was carried out in V. cholerae to evaluate their effect on motility and biofilm formation, two well-characterized phenotype alterations associated with intracellular c-di-GMP variation in this bacterium. Most of the predicted DGCs and PDEs were found to be active in the V. cholerae model. Expression of truncated versions of CD0522, a protein with two GGDEF domains and one EAL domain, suggests that it can act alternatively as a DGC or a PDE. The activity of one purified DGC (CD1420) and one purified PDE (CD0757) was confirmed by in vitro enzymatic assays. GTP was shown to be important for the PDE activity of CD0757. Our results indicate that, in contrast to most Gram-positive bacteria including its closest relatives, C. difficile encodes a large assortment of functional DGCs and PDEs, revealing that c-di-GMP signalling is an important and well-conserved signal transduction system in this human pathogen.  相似文献   

17.
The formation of biofilm communities enhances the persistence of Vibrio cholerae in aquatic environments. Biofilm production is repressed by the quorum-sensing regulator HapR in response to the accumulation of CAI-1 and AI-2. CAI-1 is the strongest input signal activating HapR, whereas the role of AI-2 remains ill-defined. In the present study, we show that a V. cholerae luxS (AI-2-defective) mutant made increased biofilm. Interestingly, cells in the biofilm were more responsive to AI-2 deficiency than cells from the planktonic population.  相似文献   

18.
Cyclic di-guanylic acid (c-diGMP) is a second messenger that modulates the cell surface properties of several microorganisms. Concentrations of c-diGMP in the cell are controlled by the opposing activities of diguanylate cyclases and phosphodiesterases, which are carried out by proteins harbouring GGDEF and EAL domains respectively. In this study, we report that the cellular levels of c-diGMP are higher in the Vibrio cholerae rugose variant compared with the smooth variant. Modulation of cellular c-diGMP levels by overexpressing proteins with GGDEF or EAL domains increased or decreased colony rugosity respectively. Several genes encoding proteins with either GGDEF or EAL domains are differentially expressed between the two V. cholerae variants. The generation and characterization of null mutants of these genes (cdgA-E, rocS and mbaA) revealed that rugose colony formation, exopolysaccharide production, motility and biofilm formation are controlled by their action. Furthermore, epistasis analysis suggested that cdgC, rocS and mbaA act in convergent pathways to regulate the phenotypic properties of the rugose and smooth variants, and are part of the VpsR, VpsT and HapR signal transduction pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号