首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes involved in methane formation from carbon dioxide and dihydrogen in Methanopyrus kandleri require high concentrations (> 1 M) of lyotropic salts such as K2HPO4/KH2PO4 or (NH4)2SO4 for activity and for thermostability. The requirement correlates with high intracellular concentrations of cyclic 2,3-diphosphoglycerate (cDPG; ≈ 1 M) in this hyperthermophilic organism. We report here on the effects of potassium cDPG on the activity and thermostability of the two methanogenic enzymes cyclohydrolase and formyltransferase and show that at cDPG concentrations prevailing in the cells the investigated enzymes are highly active and completely thermostable. At molar concentrations also the potassium salts of phosphate and of 2,3-bisphosphoglycerate, the biosynthetic precursor of cDPG, were found to confer activity and thermostability to the enzymes. Thermodynamic arguments are discussed as to why cDPG, rather than these salts, is present in high concentrations in the cells of Mp. kandleri. Received: 18 June 1998 / Accepted: 24 August 1998  相似文献   

2.
Archaeoglobus fulgidus and Methanopyrus kandleri are both extremely thermophilic Archaea with a growth temperature optimum at 83°C and 98°C, respectively. Both Archaea contain an active N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase. The enzyme from M. kandleri has recently been characterized. We describe here the purification and properties of the enzyme from A. fulgidus.The cyclohydrolase from A. fulgidus was purified 180-fold to apparent homogeneity and its properties were compared with those recently published for the cyclohydrolase from M. kandleri. The two cytoplasmic enzymes were found to have very similar molecular and catalytic properties. They differed, however, significantly with respect of the effect of K2HPO4 and of other salts on the activity and the stability. The cyclohydrolase from A. fulgidus required relatively high concentrations of K2HPO4 (1 M) for optimal thermostability at 90°C but did not require salts for activity. Vice versa, the enzyme from M. kandleri was dependent on high K2HPO4 concentrations (1.5 M) for optimal activity but not for thermostability. Thus the activity and structural stability of the two thermophilic enzymes depend in a completely different way on the concentration of inorganic salts. The molecular basis for these differences are discussed.Abbreviations H4MPT tetrahydromethanopterin - MFR methanofuran - CH3–H4MPT N 5-methyl-H4MPT - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH2H4MPT N 5,N 10-methenyl-H4MPT - CHO–H4MPT N 5 formyl-H4MPT - CHO-MFR formyl-MFR - cyclohydrolase N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase - MOPS 3-(N-morpholino) propane sulfonic acid - TRICINE N-tris (hydroxymethyl) methyl glycine - 1 U=1 mol/min  相似文献   

3.
The activity of purified N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase from Methanopyrus kandleri was found to increase up to 200-fold when potassium phosphate was added in high concentrations (1.5 M) to the assay. A 200-fold stimulation was also observed with sodium phosphate (1 M) and sodium sulfate (1 M) whereas stimulation by potassium sulfate (0.8 M), ammonium sulfate (1.5 M), potassium chloride (2.5 M), and sodium chloride (2 M) was maximal 100-fold. A detailed kinetic analysis of the effect of potassium phosphate revealed that this salt exerted its stimulatory effect by decreasing the K m for N 5,N 10-methenyltetrahydromethanopterin from 2 mM to 40 M and by increasing the V max from 2000 U/mg (kcat=1385 s-1) to 13300 U/mg (kcat=9200 s-1). Besides increasing the catalytic efficiency (kcat/K m) salts were found to protect the cyclohydrolase from heat inactivation. For maximal thermostability much lower concentrations (0.1 M) of salts were required than for maximal activity.Abbreviations H4MPT tetrahydromethanopterin - N 5,N 10-methenyl-H4MPT - CHO-H4MPT N 5-formyl-H4-MPT - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH3–H4-MPT N 5-methyl-H4MPT - MOPS -N-morpholinopropane sulfonic acid - TRICINE N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

4.
A bacterium tentatively classified as Arthrobacter strain Py1 being capable to degrade pyrrole-2-carboxylate as only source of carbon, nitrogen, and energy was isolated from soil. In contrast to many other N-heterocyclic compounds, growth of the isolate on pyrrole-2-carboxylate was not affected by molybdate or its specific inhibitor tungstate, indicating a molybdoenzyme-independent breakdown. The latter was initiated by a hydroxylation reaction catalyzed by a pyrrole-2-carboxylate oxygenase, which also exhibited an NADH-cytochrome c reductase activity. The pyrrole-2-carboxylate oxygenase reaction as examined in cell extracts depended on NADH, FAD, and pyrrole-2-carboxylate; the apparent K m values were 44, 6, and 43 M, respectively. A degradation pathway for pyrrole-2-carboxylate is proposed which involves 5-hydroxy-pyrrole-2-carboxylate and 2-oxoglutarate.  相似文献   

5.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogens known so far. N 5 N 10 -Methylenetetrahydromethanopterin reductase, an enzyme involved in methanogenesis from CO2, was purified from this hyperthermophile. The apparent molecular mass of the native enzyme was found to be 300 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only one polypeptide of apparent molecular mass 38 kDa. The ultraviolet/visible spectrum of the enzyme was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was specific for reduced coenzyme F420 as electron donor; NADH, NADPH or reduced dyes could not substitute for the 5-deazaflavin. The catalytic mechanism was found to be of the ternary complex type as deduced from initial velocity plots. V max at 65°C and pH 6.8 was 435 U/mg (kcat=275 s-1) and the K m for methylenetetrahydro-methanopterin and for reduced F420 were 6 M and 4 M, respectively. From Arrhenius plots an activation energy of 34 kJ/mol was determined. The Q 10 between 40°C and 90°C was 1.5.The reductase activity was found to be stimulated over 100-fold by sulfate and by phosphate. Maximal stimulation (100-fold) was observed at a sulfate concentration of 2.2 M and at a phosphate concentration of 2.5 M. Sodium-, potassium-, and ammonium salts of these anions were equally effective. Chloride, however, could not substitute for sulfate or phosphate in stimulating the enzyme activity.The thermostability of the reductase was found to be very low in the absence of salts. In their presence, however, the reductase was highly thermostable. Salt concentrations between 0.1 M and 1.5 M were required for maximal stability. Potassium salts proved more effective than ammonium salts, and the latter more effective than sodium salts in stabilizing the enzyme activity. The anion was of less importance.The N-terminal amino acid sequence of the reductase from M. kandleri was determined and compared with that of the enzyme from Methanobacterium thermoautotrophicum and Methanosarcina barkeri. Significant similarity was found.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5 ,N 10 -methylene-H4MPT - CH3-H4MPT N 5-methyl-H4MPT - CHH4MPT+ N 5 ,N 10 -methenyl-H4MPT - F420 coenzyme F420; 1 U=1 mol/min  相似文献   

6.
The ftr gene encoding formylmethanofuran: tetrahydromethanopterin formyltransferase (Ftr) from Methanosarcina barkeri was cloned, sequenced, and functionally expressed in Escherichia coli. The overproduced enzyme was purified eightfold to apparent homogeneity, and its catalytic properties were determined. The primary structure and the hydropathic character of the formyltransferase from Methanosarcina barkeri were compared with those of the enzymes from Methanobacterium thermoautotrophicum, Methanothermus fervidus, and Methanopyrus kandleri. The amino acid sequence of the enzyme from Methanosarcina barkeri was 64%, 61%, and 59% identical to that of the enzyme from Methanobacterium thermoautotrophicum, Methanothermus fervidus, and Methanopyrus kandleri, respectively. A negative correlation between the hydrophobicity of the enzymes and both the growth temperature optimum and the intracellular salt concentration of the four organisms was observed. The hydrophobicity of amino acid composition was +21.6 for the enzyme from Methanosarcina barkeri (growth temperature optimum 37° C, intracellular salt concentration ≈ 0.3 M), +9.9 for the enzyme from Methanobacterium thermoautotrophicum (65°C, ≈ 0.7 M), –20.8 for the enzyme from Methanothermus fervidus (83° C, ≈ 1.0 M) and –31.4 for the enzyme from Methanopyrus kandleri (98° C, > 1.1 M). Generally, a positive correlation between hydrophobicity and thermophilicity of enzymes and a negative correlation between hydrophobicity and halophilicity of enzymes are observed. The findings therefore indicate that the hydropathic character of the formyltransferases compared is mainly determined by the intracellular salt concentration rather than by temperature. Sequence similarities between the formyltransferases from methanogens and an open reading frame from Methylobacterium extorquens AM1 are discussed. Received: 7 September 1995 / Accepted: 7 November 1995  相似文献   

7.
Abstract

The MkaH protein from the archaeon Methanopyrus kandleri, an unusual assembly of two histone-fold domains in a single polypeptide chain, demonstrates high structural similarity to eukaryal histones. We studied the DNA binding and self-association properties of MkaH by means of the electrophoretic mobility shift assay (EMSA), electron microscopy (EM), chemical cross-linking, and analytical gel filtration. EMSA showed an increased mobility of linear DNA complexed with MkaH protein with a maximum at a protein-DNA weight ratio (Rw) of ≈3; the mobility decreased at higher protein concentration. EM of the complexes formed at Rw ≤ 3 revealed formation of isometric loops encompassing 71 +/- 7 bp of DNA duplex. At high values of Rw (≥9) thickened compact nucleoprotein structures were observed; no individual loops were seen within the complexes. Gel filtration chromatography and chemical fixation indicated that in the absence of DNA the dominant form of the MkaH in solution, unlike other archaeal histones, is a stable dimer (pseudo-tetramer of the histone-fold domain) apparently resembling the eukaryal (H3-H4)2 tetramer. Similarly, dimers are the dominant form of the protein interacting with DNA. The properties of MkaH supporting the assignment of its intermediate position between other archaeal and eukaryal histones are discussed.  相似文献   

8.
Formylmethanofuran:tetrahydromethanopterin formyltransferase from the hyperthermophilic methanogenic Archaeon Methanopyrus kandleri (growth temperature optimum 98°C) was crystallized by vapor diffusion methods. Crystal form M obtained with 2-methyl-2,4-pentanediol as precipitant displayed the space group P21 with unit cell parameters of a = 87.0 Å, b = 75.4 Å, c = 104.7 Å, and β = 113.9° and diffracted better than 2 Å resolution. Crystal form P grown from polyethylene glycol 8000 belonged to the space group I4122 and had unit cell parameters of 157.5 Å and 242.1 Å. Diffraction data to 1.73 Å were recorded. Crystal form S which was crystallized from (NH4)2SO4in the space group I4122 with unit cell parameters of 151.3 Å and 249.5 Å diffracted at least to 2.2 Å resolution. All crystal forms probably have four molecules per asymmetric unit and are suitable for X-ray structure analysis. © 1996 Wiley-Liss, Inc.  相似文献   

9.
The N5,N10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain Marburg has been purified with reasonable yield and much higher specific activity than previously reported. For the first time it has been shown that both N5,N10-methylenetetrahydromethanopterin dehydrogenase and N5,N10-methenyltetrahydromethanopterin cyclohydrolase activities were stable under air and could be purified using aerobic operations. The dehydrogenase activity from Methanobacterium thermoautotrophicum Marburg was stable in phosphate buffer with or without glycerol or ammonium sulfate under both aerobic and anaerobic conditions. However, the presence of either 2-mercaptoethanol or dithiothreitol in the enzyme solution destroyed the enzyme activity during both aerobic and anaerobic incubations. Dehydrogenase was purified 62-fold using Phenyl-Sepharose and DEAE-Sephadex chromatography in succession under air. Both of these chromatographic methods separated dehydrogenase activity from N5,N10-methenyltetrahydromethanopterin cyclohydrolase; DEAE-Sephadex provided the best separation. Phenyl-Sepharose chromatography of the supernatant of cell extracts containing ammonium sulfate at 60% of saturation provided a 4.7-fold purification and 98% recovery of cyclohydrolase; this result established the air stability of N5,N10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum Marburg.  相似文献   

10.
Methylene-H4MPT reductase was found to be present in Archaeoglobus fulgidus in a specific activity of 1 U/mg. The reductase was purified 410-fold. The native enzyme showed an apparent molecular mass of approximately 200 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only 1 polypeptide of apparent molecular mass 35 kDa. The ultraviolet/visible spectrum of the reductase was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was dependent on reduced coenzyme F420 as electron donor. Neither NADH, NADPH, nor reduced viologen dyes could substitute for the reduced deazaflavin. From reciprocal plots, which showed an intersecting patter, a K m for methylene-H4MPT of 16 M, a K m for F420H2 of 4 M, and a V max of 450 U/mg (Kcat=265 s-1) were obtained. The enzyme was found to be rapidly inactivated when incubated at 80°C in 100 mM Tris/HCl pH 7. The rate of inactivation, however, decreased to essentially zero in the presence of either F420 (0.2 mM), methylene-H4MPT (0.2 mM), albumin (1 mg/ml), or KCl (0.5 M). The N-terminal amino acid sequence was determined and found to be similar to that of methylene-H4MPT reductase (F420-dependent) from the methanogens Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Methanopyrus kandleri. The purification and some properties of formylmethanofuran dehydrogenase from A. fulgidus are also described.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5,N 10-methylene-H4MPT - CH3–H4MPT N 5-methyl-H4MPT - CHH4MPT methenyl-H4MPT - F420 coenzyme F420 - MFR methanofuran - CHO-MFR formyl-MFR - 1 U 1 mol/min  相似文献   

11.
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N 5, N 10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N 5,N 10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7±0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the V max rather than the K m of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of M (NH4)2SO4 the V max was 4000 U/mg (k cat=2400 s-1) and the K m for N 5,N 10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 M and 20 M, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90°C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme F420 - CH2=H4MPT N 5,N 10-methylenetrahydromethanopterin - CHH4MPT+ N 5,N 10-methenyltetrahydromethanopterin - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - Mops N-morpholinopropane sulfonic acid - Tricine N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

12.
A choline-containing phospholipid (PL-4) in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997). The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography followed by positive staining with Dragendorff reagent and fast-atom bombardment-mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate). Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas-liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea.  相似文献   

13.
We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2–CO2-, methanol-, and H2–CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2–CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2–CO2- or methanol-grown cells, acetate-or H2–CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.Abbreviations MF methanofuran - H4MPT 5,6,7,8-tetrahydromethanopterin - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP heterodisulfide of HS-CoM and HS-HTP - F420 coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deaza-riboflavin derivative) - H2F420 reduced coenzyme F420 - HC+=H4MPT N5,N10-methenyl-H4MPT - H2C=H4MPT N5,N10-methylene-H4MPT - H3C=H4MPT N5-methyl-H4MPT - BES 2-bromoethanesulfonic acid  相似文献   

14.
Abstract The influence of elevated hydrostatic pressure on the growth rates of two hyperthermophilic Archaea isolated from hydrothermal vent environments (strains ES1 and ES4) was investigated over their entire temperature range for growth. Thermococcus celer , a shallow marine hyperthermophile was included in the study for comparative purposes. For one strain (ES4), the pressure at the site of collection (22 MPa) caused an upward shift in the optimal growth temperature of about 6°C compared to growth at 1 MPa. Although the optimal temperature for ES1 was unaffected by 22 MPa, elevated pressure stimulated the growth rate at supra-optimal temperatures. The temperature range for growth for both organisms was extended upward 2°C at 22 MPa pressure. For both strains 22 MPa had little effect on growth rates at sub-optimal temperatures. Growth was observed at pressures as high as 89 MPa for ES1 and 67 MPa for ES4, but with these higher pressures the temperature range for growth was narrowed, and the optimal temperature was shifted downward. Growth of Thermococcus celer was slightly stimulated by 22 MPa at its reported optimal temperature of 88°C, but was inhibited by higher pressure.  相似文献   

15.
16.
Hyperthermophilic archaea, specificallyPyrococcus spp., are the target of current efforts in developing heterologous expression systems. However, the published plasmid purification and plasmid screening protocols are long and tedious. We describe a fast, simple protocol for plasmid purification fromPyrococcus spp. developed while extracting the plasmid pGT5 fromPyrococcus abyssi cells. The protocol is modified from the procedures for commercial plasmid minipreps and is completed in about 20 min. The DNA is easily digested by restriction enzymes and can be used in sequencing reactions without additional purification.  相似文献   

17.
A novel intracellular serine proteinase from the marine aerobic hyperthermophilic archaeon Aeropyrum pernix K1 (JCM 9820) that we designated pernilase was purified by ammonium sulfate precipitation, anionic-exchange chromatography, affinity chromatography, and gel filtration chromatography. The purified enzyme was composed of a single polypeptide chain with a molecular mass of 50 kDa as determined by SDS-PAGE. The proteinase had a broad pH profile (pH 5–10) with an optimum pH of 9.0 for peptide hydrolysis. The optimum temperature for enzyme activity was 90°C. The enzyme was strongly inhibited by diisopropyl fluorophosphate (DFP) and phenylmethyl sulfonylfluoride (PMSF), suggesting that it corresponds to a serine proteinase. The enzyme was highly resistant to the reducing agents dithiothreitol and 2-mercaptoethanol but sensitive to the denaturing reagents guanidine-HCl and urea and also to the detergent sodium dodecyl sulfate (SDS). Pernilase showed high substrate specificity for Boc-Leu-Gly-Arg-MCA peptide. Thermostability of this enzyme showed half-lives of 85 min at 100°C and 12 min at 110°C. Received September 24, 1997 / Accepted May 20, 1998  相似文献   

18.
Information on the immune response against H5N1 within the lung is lacking. Here we describe the sustained antiviral immune responses, as indicated by the expression of MxA protein and IFN-α mRNA, in autopsy lung tissue from an H5N1-infected patient. H5N1 infection of primary bronchial/tracheal epithelial cells and lung microvascular endothelial cells induced IP-10, and also up-regulated the retinoic acid-inducible gene-I (RIG-I). Down-regulation of RIG-I gene expression decreased IP-10 response. Co-culturing of H5N1-infected pulmonary cells with TNF-α led to synergistically enhanced production of IP-10. In the absence of viral infection, TNF-α and IFN-α also synergistically enhanced IP-10 response. Methylprednisolone showed only a partial inhibitory effect on this chemokine response. Our findings strongly suggest that both the H5N1 virus and the locally produced antiviral cytokines; IFN-α and TNF-α may have an important role in inducing IP-10 hyperresponse, leading to inflammatory damage in infected lung.  相似文献   

19.
Influenza A viruses of subtype H9N2 are wide spread among poultry and other mammalian species. Crossing the species barrier from poultry to human occurred in recent years creating a pandemic of H9N2 virus. It is known that the pathogenicity of H9N2 is lower than H5N1. Nonetheless, it is important to establish the molecular functions of H9N2 viral proteins. We studied mutations in the polymerase protein PB2 of H9N2 from different strains and compared it with the highly pathogenic H5N1. The mutation M294T was found to be important in the N-myristoylation domain of Ck/UP/2573/India/04(H9N2) isolate. Prediction of secondary structures and PROSITE motif assignments were performed for PB2 to gain functional insight. Subsequently, the effect of mutations in secondary structures among strains is discussed.  相似文献   

20.
Four open reading frames encoding putative nitrilases were identified in the genomes of the hyperthermophilic archaea Pyrococcus abyssi, Pyrococcus horikoshii, Pyrococcus furiosus, and Aeropyrum pernix (growth temperature 90-100 degrees C). The nitrilase encoding genes were cloned and overexpressed in Escherichia coli. Enzymatic activity could only be detected in the case of Py. abyssi. This recombinant nitrilase was purified by heat treatment of E. coli crude extract followed by anion-exchange chromatography with a yield of 88% and a specific activity of 0.14 U/mg. The recombinant enzyme, which represents the first archaeal nitrilase, is a dimer (29.8 kDa/subunit) with an isoelectric point of pI 5.3. The nitrilase is active at a broad temperature (60-90 degrees C) and neutral pH range (pH 6.0-8.0). The recombinant enzyme is highly thermostable with a half-life of 25 h at 70 degrees C, 9 h at 80 degrees C, and 6 h at 90 degrees C. Thermostability measurements by employing circular dichroism spectroscopy and differential scanning microcalorimetry, at neutral pH, have shown that the enzyme unfolds up to 90 degrees C reversibly and has a T(m) of 112.7 degrees C. An inhibition of the enzymatic activity was observed in the presence of acetone and metal ions such as Ag(2+) and Hg(2+). The nitrilase hydrolyzes preferentially aliphatic substrates and the best substrate is malononitrile with a K(m) value of 3.47 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号