首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Estradiol (E(2)) and tamoxifen exert their effects through two members of the nuclear receptor superfamily, estrogen receptor (ER)-alpha and -beta. We want to identify the key interactions linking ligand-binding and activity of the ERalpha. Asp-351 and Leu-536 participate in hydrogen bond (Asp-351) and hydrophobic (Leu-536) interactions at the start of helix 12 in the ligand-binding domain (LBD) of the ERalpha. Mutations at each position alter ER activity, but we do not know which is more important. We mutated these residues in combination and individually and assessed the activity of the mutated ERs in the absence and presence of E(2) and 4-OHT on an ERE-driven and an AP-1-driven promoter, as well as their ability to interact with coregulators. On an ERE-driven promoter, the residue at position 351 determined whether E(2) stimulated or reduced the activity of the ER, as well as the level of activity in the presence of 4-OHT. Surprisingly, mutation of both residues generally did not produce cumulative deleterious effects, and they exerted counterbalancing effects on the basal activity on both promoters. Our results identify the contributions of specific interactions to the activity of the hERalpha, and support the concept that this region couples ligand-binding with ER activity.  相似文献   

2.
3.
4.
5.
6.
7.
We describe a biosensor that reports the binding of small-molecule ligands to proteins as changes in growth of temperature-sensitive yeast. The yeast strains lack dihydrofolate reductase (DHFR) and are complemented by mouse DHFR containing a ligand-binding domain inserted in a flexible loop. Yeast strains expressing two ligand-binding domain fusions, FKBP12-DHFR and estrogen receptor-alpha (ERalpha)-DHFR, show increased growth in the presence of their corresponding ligands. We used this sensor to identify mutations in residues of ERalpha important for ligand binding, as well as mutations generally affecting protein activity or expression. We also tested the sensor against a chemical array to identify ligands that bind to FKBP12 or ERalpha. The ERalpha sensor was able to discriminate among estrogen analogs, showing different degrees of growth for the analogs that correlated with their relative binding affinities (RBAs). This growth assay provides a simple and inexpensive method to select novel ligands and ligand-binding domains.  相似文献   

8.
Although the two subtypes of the human estrogen receptor (ER), ERalpha and ERbeta, share only 56% amino acid sequence identity in their ligand binding domain (LBD), the residues that surround the ligand are nearly identical; nevertheless, subtype-selective ligands are known. To understand the molecular basis by which diarylpropionitrile (DPN), an ERbeta-selective ligand, is able to discriminate between the two ERs, we examined its activity on ER mutants and chimeric constructs generated by DNA shuffling. The N-terminal region of the ERbeta LBD (through helix 6) appears to be fully responsible for the ERbeta selectivity of DPN. In fact, a single ERalpha point mutation (L384M) was largely sufficient to switch the DPN response of this ER to that of the ERbeta type, but residues in helix 3 are also important in achieving the full ERbeta selectivity of DPN. Using molecular modeling, we found an energetically favorable fit for the S-DPN enantiomer in ERbeta, in which the proximal phenol mimics the A ring of estradiol, and the nitrile engages in stabilizing interactions with residues in the ligand-binding pocket of ERbeta. Our findings highlight that a limited number of critical interactions of DPN with the ERbeta ligand-binding pocket underlie its ER subtype-selective character.  相似文献   

9.
Brooks SC  Skafar DF 《Steroids》2004,69(6):401-418
A variety of compounds, including the selective estrogen receptor (ER) modulators tamoxifen and raloxifene, phytoestrogens such as genistein, and xenoestrogens such as bisphenol, bind to the estrogen receptor and elicit biological responses. Structural studies have linked the altered activity of compounds such as 4-hydroxytamoxifen, raloxifene, genistein, and tetrahydrochrysene, which have substantially different structures from estradiol (E2), to differences in the positioning of the critical "helix 12" within the ligand-binding domain (LBD) of the ER-ligand complex. However, subtle permutations of the E2 molecule would also be expected to modulate the pattern of responses within a cell. Forty-two ligands were constructed by the addition or relocation of double bonds, hydroxyl, keto, amino, and nitro substituents throughout the estra-l,3,5(10)-triene (estratriene) ring system. In this review, we summarize the effects of subtle changes in the estratriene molecule on the ability of the receptor complex to stimulate the growth of MCF-7 cells, or affect the expression of four estrogen-regulated genes (progesterone receptor, pS2 protein, cathepsin D, and tissue plasminogen activator), as well as undergo nuclear processing and downregulate ERalpha mRNA. The affinity of these ligands for, and mechanism of their binding with, the ERalpha have been measured, along with their effect on the conformation of the ER-ERE complex. In particular, two A-ring isomers of E2, 2- and 4-hydroxyestratriene-17beta-ol, display gene selective activity within MCF-7 cells which is dependent on complex endogenous promoters, an intact AF-2 and is sensitive to the level of SRC-1. Both of these A-ring isomers function as antiestrogens. Molecular modeling of these two A-ring isomers complexed with the ER ligand-binding domain supports the idea that the conformation of the LBD is affected by subtle changes in the estratriene structure.  相似文献   

10.
Lasofoxifene is a new and potent selective estrogen receptor modulator (SERM). The structural basis of its interaction with the estrogen receptor has been investigated by crystallographic analysis of its complex with the ligand-binding domain of estrogen receptor alpha at a resolution of 2.0 A. As with other SERMs, lasofoxifene diverts the receptor from its agonist-bound conformation by displacing the C-terminal AF-2 helix into the site at which the LXXLL motif of coactivator proteins would otherwise be able to bind. Lasofoxifene achieves this effect by occupying the space normally filled by residue Leu 540, as well as by modulating the conformation of residues of helix 11 (His 524, Leu 525). A well-defined salt bridge between lasofoxifene and Asp 351 suggests that charge neutralization in this region of the receptor may explain the some of the antiestrogenic effects of lasofoxifene. The results suggest general features of ERalpha/SERM recognition, and add a new dimension to efforts to rationalize differences between the biological activity profiles exhibited by these important pharmacological agents.  相似文献   

11.
12.
13.
14.
15.
16.
17.
We have identified novel estrogen receptor alpha (ERalpha) antagonists using both cell-based and computer-based virtual screening strategies. A mammalian two-hybrid screen was used to select compounds that disrupt the interaction between the ERalpha ligand binding domain (LBD) and the coactivator SRC-3. A virtual screen was designed to select compounds that fit onto the LxxLL peptide-binding surface of the receptor, based on the X-ray crystal structure of the ERalpha LBD complexed with a LxxLL peptide. All selected compounds effectively inhibited 17-beta-estradiol induced coactivator recruitment with potency ranging from nano-molar to micromolar. However, in contrast to classical ER antagonists, these novel inhibitors poorly displace estradiol in the ER-ligand competition assay. Nuclear magnetic resonance (NMR) suggested direct binding of these compounds to the receptors pre-complexed with estradiol and further demonstrated that no estradiol displacement occurred. Partial proteolytic enzyme digestion revealed that, when compared with 17-beta-estradiol- and 4 hydroxy-tamoxifen (4-OHT) bound receptors, at least one of these compounds might induce a unique receptor conformation. These small molecules may represent new classes of ER antagonists, and may have the potential to provide an alternative for the current anti-estrogen therapy.  相似文献   

18.
19.
3-Aryl-tetrahydroquinolines, aza analogues of equol, are synthesized and evaluated for their binding properties to the estrogen receptors ERalpha and ERbeta. Several of these compounds exhibited binding selectivity for ER similar to that of genistein. Compounds 8c and 8d were found to have dual actions: antagonists for ERalpha and agonists for ERbeta in a yeast two-hybrid assay. These compounds have no estrogenic effects on the uterus and bone in vivo.  相似文献   

20.
New World primates (NWPs) exhibit a compensated form of resistance to gonadal steroid hormones. We demonstrated recently that estrogen resistance in NWP cells was associated with the overexpression of two proteins, a nonreceptor-related, dominant-negative-acting estrogen response element (ERE)-binding protein (ERE-BP) and an intracellular estradiol-binding protein (IEBP). Based on the N-terminal sequences of tryptic fragments of IEBP isolated from a 17beta-estradiol (E2) affinity column we cloned a full-length cDNA for IEBP from the estrogen-resistant NWP cell line, B95-8. Subsequent sequence analysis revealed 87% sequence identity between the deduced peptide for IEBP and human Hsp27. When hormone-responsive, wild-type Old World primate (OWP) cells were transiently transfected with IEBP cDNA, E2-directed ERE reporter luciferase activity was reduced by 50% compared with vector only-transfected OWP cells (p < 0.0018). When IEBP and ERE-BP were cotransfected, ERE promoter-reporter activity was reduced by a further 60% (p < 0.0001). Electrophoresis mobility shift analyses showed that IEBP neither bound to ERE nor competed with the estrogen receptor (ER) for binding to ERE. However, there was evidence of protein-protein interaction of IEBP and ERalpha; IEBP was coimmunoprecipitated with anti-ERalpha antibody in wild-type cells stably transfected with IEBP. A specific interaction between ERalpha and IEBP was confirmed in glutathione S-transferase pull-down and yeast two-hybrid assays. Data indicate that the Hsp27-related IEBP interacts with the ligand binding domain of the ERalpha. In summary, by inhibiting the ERalpha-E2 interaction, IEBP acts to squelch ERalpha-directed ERE-regulated transactivation and promote estrogen resistance in NWP cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号