首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-copy gene fusions between the lacZ reporter gene and Escherichia coli strains containing promoters induced by cold shock (cspA), cytoplasmic stress (ibp), or protein misfolding in the cell envelope (P3rpoH) were constructed and tested to determine their ability to detect antibacterial agents while simultaneously providing information on their cellular targets. Antibiotics that affect prokaryotic ribosomes selectively induced the cspA::lacZ or ibp::lacZ gene fusion, depending on their mode of action. The membrane-damaging peptide polymyxin B induced both the P3rpoH::lacZ and ibp::lacZ fusions, while the beta-lactam antibacterial agent carbenicillin activated only the P3rpoH promoter. Nalidixic acid, a compound that causes DNA damage, downregulated beta-galactosidase synthesis from P3rpoH but had little effect on expression of the reporter enzyme from either the cspA or ibp promoter. All model antibiotics could be identified over a wide range of sublethal concentrations with signal-to-noise ratios between 2 and 11. A blue halo assay was developed to rapidly characterize the modes of action of antibacterial agents by visual inspection, and this assay was used to detect chloramphenicol secreted into the growth medium of Streptomyces venezuelae cultures. This simple system holds promise for screening natural or combinatorial libraries of antimicrobial compounds.  相似文献   

2.
3.
4.
5.
6.
7.
8.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i). the expression of rpoH, encoding the heat shock-specific sigma factor sigma(32), was also induced by high pressure; (ii). heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii). basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

9.
Extracts made from Escherichia coli null dnaK strains contained elevated levels of ATP-dependent proteolytic activity compared with levels in extracts made from dnaK+ strains. This ATP-dependent proteolytic activity was not due to Lon, Clp, or Alp-associated protease. Comparison of the levels of ATP-dependent proteolytic activity present in lon rpoH dnaK mutants and in lon rpoH dnaK+ mutants showed that the level of ATP-dependent proteolytic activity was elevated in the lon rpoH dnaK mutant strain. These findings suggest that DnaK negatively regulates a new ATP-dependent proteolytic activity, independently of sigma 32. Other results indicate that an ATP-dependent proteolytic activity was increased in a lon alp strain after heat shock. It is not yet known whether the same protease is associated with the increased ATP-dependent proteolytic activity in the dnaK mutants and in the heat-shocked lon alph strain.  相似文献   

10.
Bacteria must contend with conditions of nutrient limitation in all natural environments. Complex programmes of gene expression, controlled in part by the alternative sigma factors sigmaS (sigma38, RpoS) and sigmaH (sigma32, RpoH), allow a number of bacterial species to survive conditions of partial or complete starvation. We show here that the alternative sigma factor sigmaE (sigma24, RpoE) also facilitates the survival of Salmonella typhimurium under conditions of nutrient deprivation. Expression of the sigmaE regulon is strongly induced upon entry of Salmonella into stationary phase. A Salmonella mutant lacking sigmaE has reduced survival during stationary phase as well as increased susceptibility to oxidative stress. A Salmonella strain lacking both sigmaE and sigmaS is non-viable after just 24 h in stationary phase, but survival of these mutants is completely preserved under anaerobic stationary-phase conditions, suggesting that oxidative injury is one of the major mechanisms of reduced microbial viability during periods of nutrient deprivation. Moreover, the attenuated virulence of sigmaE-deficient Salmonella for mice can be largely restored by genetic abrogation of the host phagocyte respiratory burst, suggesting that the sigmaE regulon plays an important antioxidant role during Salmonella infection of mammalian hosts.  相似文献   

11.
12.
13.
14.
15.
The sigmaS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, sigmaS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of sigmaS and that sigmaS should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a sigmaS consensus promoter in silico. Moreover, our results suggest that sigmaS-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect sigmaS and/or sigma70 selectivity of many promoters. These observations indicate that certain modules of the sigmaS-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with sigma70 RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation.  相似文献   

16.
S Dukan  S Dadon  D R Smulski    S Belkin 《Applied microbiology》1996,62(11):4003-4008
A series of plasmids, containing fusions of different stress promoters to lux reporter genes, was used in an attempt to monitor the defense circuits activated upon exposure of Escherichia coli to sublethal doses of free chlorine. A significant level of activation was exhibited by promoters of three heat shock genes (grpE, dnaK, and lon), in an rpoH-dependent manner. The promoter of micF, a gene under the control of the soxRS regulon, was also strongly induced, but not in a soxR mutant. This induction was not affected by sodA and sodB mutations, implying that it did not involve oxygen radical activity. Free-chlorine activation of both heat shock and soxRS regulons required an exposure of less then I s in duration. The oxyR or the SOS regulons were apparently not induced by free chlorine (as judged by lack of activation of katG and recA, respectively), and neither was the universal stress (uspA) protein.  相似文献   

17.
18.
19.
Escherichia coli K-12 strain 285c contains a short deletion mutation in rpoD, the gene encoding the sigma 70 subunit of RNA polymerase. The sigma 70 protein encoded by this allele (rpoD285) unstable, and this instability leads to temperature-sensitive growth. Pseudorevertants of 285c that can grow at high temperature contain mutations in the rpoH gene (encoding the heat shock sigma factor sigma 32), and their mutant sigma 70 proteins have increased stability. We characterized the alterations in three of these rpoH alleles. rpoH111 was a point mutation resulting in a single amino acid substitution. rpoH107 and rpoH113, which are known to be incompatible with rpoD+, altered the restriction map of rpoH. rpoH113 was deleted for 72 base pairs of the rpoH gene yet retained some sigma 32 activity. rpoH107 had two IS1 elements that flanked an unknown DNA segment of more than 6.4 kilobases inserted in the rpoH promoter region. The insertion decreased the amount of rpoH mRNA to less than 0.5% of the wild-type level at 30 degrees C. However, the mRNA from several heat shock promoters was decreased only twofold, suggesting that the strain has a significant amount of sigma 32.  相似文献   

20.
B Bukau  G C Walker 《The EMBO journal》1990,9(12):4027-4036
An Escherichia coli mutant lacking HSP70 function, delta dnaK52, is unable to grow at both high and low temperatures and, at intermediate temperature (30 degrees C), displays defects in major cellular processes such as cell division, chromosome segregation and regulation of heat shock gene expression that lead to poor growth and genetic instability of the cells. In an effort to understand the roles of molecular chaperones such as DnaK in cellular metabolism, we analyzed secondary mutations (sid) that suppress the growth defects of delta dnaK52 mutants at 30 degrees C and also permit growth at low temperature. Of the five suppressors we analyzed, four were of the sidB class and mapped within rpoH, which encodes the heat shock specific sigma subunit (sigma 32) of RNA polymerase. The sidB mutations affected four different regions of the sigma 32 protein and, in one case, resulted in a several fold reduction in the cellular concentration of sigma 32. Presence of any of the sidB mutations in delta dnaK52 mutants as well as in dnaK+ cells caused down-regulation of heat shock gene expression at 30 degrees C and decreased induction of the heat shock response after shift to 43.5 degrees C. These findings suggest that the physiologically most significant function of DnaK in the metabolism of unstressed cells is its function in heat shock gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号