首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semliki Forest virus (SFV) vectors have been applied for the expression of recombinant integral membrane proteins in a wide range of mammalian host cells. More than 50 G protein-coupled receptors (GPCRs), several ion channels and other types of transmembrane or membrane-associated proteins have been expressed at high levels. The establishment of large-scale SFV technology has facilitated the production of large quantities of recombinant receptors, which have then been subjected to drug screening programs and structure-function studies on purified receptors. The recent Membrane Protein Network (MePNet) structural genomics initiative, where 100 GPCRs are overexpressed from SFV vectors, will further provide new methods and technologies for expression, solubilization, purification and crystallization of GPCRs.  相似文献   

2.
Production of recombinant receptors has been one of the major bottlenecks in structural biology on G protein-coupled receptors (GPCRs). The MePNet (Membrane Protein Network) was established to overexpress a large number of GPCRs in three major expression systems, based on Escherichia coli, Pichia pastoris and Semliki Forest virus (SFV) vectors. Evaluation by immunodetection demonstrated that 50% of a total of 103 GPCRs were expressed in bacterial inclusion bodies, 94% in yeast cell membranes and 95% in SFV-infected mammalian cells. The expression levels varied from low to high and the various GPCR families and subtypes were analyzed for their expressability in each expression system. More than 60% of the GPCRs were expressed at milligram levels or higher in one or several systems, compatible to structural biology applications. Functional activity was determined by binding assays in yeast and mammalian cells and the correlation between immunodetection and binding activity was analyzed.  相似文献   

3.
Semliki Forest virus (SFV) vectors have been generated for highly efficient studies on gene expression in a variety of mammalian host cells, including immortalized cell lines as well as primary cells in culture. Moreover, SFV expression has been scaled up for mammalian suspension cultures in spinner flasks and bioreactors for production of large quantities of recombinant proteins for drug screening and purification. The strong preference of expression in neuronal cells in primary cell cultures, in organotypic hippocampal slices and in vivo has made SFV vectors attractive for neurobiological studies. Additionally, the engineering of novel, less cytotoxic and temperature-sensitive SFV mutant vectors has further increased their application range.  相似文献   

4.
ABSTRACT

Semliki Forest virus (SFV) vectors have been generated for highly efficient studies on gene expression in a variety of mammalian host cells, including immortalized cell lines as well as primary cells in culture. Moreover, SFV expression has been scaled up for mammalian suspension cultures in spinner flasks and bioreactors for production of large quantities of recombinant proteins for drug screening and purification. The strong preference of expression in neuronal cells in primary cell cultures, in organotypic hippocampal slices and in vivo has made SFV vectors attractive for neurobiological studies. Additionally, the engineering of novel, less cytotoxic and temperature-sensitive SFV mutant vectors has further increased their application range.  相似文献   

5.
6.
Semliki Forest virus (SFV) vectors have been efficiently used for rapid high level expression of several G protein-coupled receptors. Here we describe the use of SFV vectors to express the alpha 1b-adrenergic receptor (AR) alone or in the presence of the G protein alpha q and/or beta 2 and gamma 2 subunits. Infection of baby hamster kidney (BHK) cells with recombinant SFV-alpha 1b-AR particles resulted in high specific binding activity of the alpha 1b-AR (24 pmol receptor/mg protein). Time-course studies indicated that the highest level of receptor expression was obtained 30 hours post-infection. The stimulation of BHK cells, with epinephrine led to a 5-fold increase in inositol phosphate (IP) accumulation, confirming the functional coupling of the receptor to G protein-mediated activation of phospholipase C. The SFV expression system represents a rapid and reproducible system to study the pharmacological properties and interactions of G protein coupled receptors and of G protein subunits.  相似文献   

7.
Rapidly generated high-titer Semliki Forest virus (SFV) vectors can infect numerous mammalian cell lines and primary cell cultures, and result in high levels of transgene expression. SFV-based expression of transmembrane receptors has been characterized by specific ligand-binding activity and functional responses. Adaptation of the SFV technology for mammalian suspension cultures has allowed the production of hundreds of milligrams of recombinant receptor for purification and structural studies. The same SFV stock solutions used for the infection of mammalian cells in culture have also been successfully applied for efficient transgene expression in organotypic hippocampal slices, as well as in vivo in rodent brain.  相似文献   

8.
Semliki Forest virus vectors were applied for the evaluation of 101 G protein-coupled receptors in three mammalian cell lines. Western blotting demonstrated that 95 of the 101 tested GPCRs showed positive signals. A large number of the GPCRs were expressed at high levels suggesting receptor yields in the range of 1 mg/L or higher, suitable for structural biology applications. Specific binding assays on a selected number of GPCRs were carried out to compare the correlation between total and functional protein expression. Ligands and additives supplemented to the cell culture medium were evaluated for expression enhancement. Selected GPCRs were also expressed from mutant SFV vectors providing enhanced protein expression and reduced host cell toxicity in attempts to further improve receptor yields.  相似文献   

9.
The broad host range and superior infectivity of alphaviruses have encouraged the development of efficient expression vectors for Semliki Forest virus (SFV) and Sindbis virus (SIN). The generation of high-titer recombinant alphavirus stocks has allowed high-level expression of a multitude of nuclear, cytoplasmic, membrane-associated and secreted proteins in a variety of different cell lines and primary cell cultures. Despite the viral cytopathogenic effects, functional assays on recombinant proteins are possible for a time-period of at least 24 hours post-infection. The high percentage (80-95%) of primary neurons infected with SFV has allowed localization and functional studies of recombinant proteins in these primary cell cultures. Through multiple infection studies the interaction of receptor and G protein subunits has become feasible. Establishment of efficient scale-up procedures has allowed production of large quantities of recombinant protein. Potential gene therapy applications of alphaviruses could be demonstrated by injection of recombinant SIN particles expressing beta-galactosidase into mouse brain. Tissue/cell specific infection has been achieved by introduction of an IgG-binding domain of protein A domain into one of the spike proteins of SIN. This enabled efficient targeting of infection to human lymphoblastoid cells.  相似文献   

10.
The alpha 2B -adrenergic receptor ( alpha 2B -AR), a member of the G protein-coupled receptor (GPCR) superfamily, was expressed at high levels from Semliki Forest virus (SFV) vectors in mammalian cells. Constructs were engineered by fusing enhanced green fluorescent protein (eGFP) and the SFV capsid to opposite ends of the alpha 2B -AR. The receptor fusions alpha 2B -AR-eGFP and CAP- alpha 2B -AR expressed in CHO-K1 cells generated alpha 2B values of 176 and 122pmol/mg of membrane protein, respectively, and showed similar ligand binding characteristics, alpha 2B -AR subtype-selectivity, and G protein activation as reported for stable expression in CHO-K1 cells. Cryo-electron microscopy and eGFP-based fluorescence indicated the same subcellular receptor distribution. SFV expression is well suited for studies on the pharmacology, biochemistry, and cell biology of GPCRs, and for large-scale recombinant protein production in mammalian suspension culture to generate sufficient receptor quantities for structural biology.  相似文献   

11.
Alphaviruses are small, enveloped positive-strand RNA viruses that have been successfully transformed into expression vectors in the case of Semliki Forest virus (SFV), Sindbis virus (SIN), and Venezuelan equine encephalitis virus. Compared to other viral vectors, their advantages are easy and fast generation of recombinant viral particles, rapid onset, and high-level transgene expression. When applied to neuronal tissue, SFV and SIN vectors possess the additional advantage of efficiently and preferentially transducing neurons rather than non-neuronal cells. This article gives an overview of the biology of SFV and SIN, their generation into expression vectors, and their application in neurobiology, with particular emphasis on the transduction of hippocampal neurons. In addition, it describes the more recent development of alphaviral vectors with decreased or absent cytotoxicity and lowered transgene expression, temperature-controllable gene expression, and altered host-cell specificity in the central nervous system (CNS). Finally, the review evaluates the use of SFV and SIN vectors in hippocampal tissue cultures vs recombinant lentivirus, adenovirus type 5, adeno-associated virus type 2, and measles virus.  相似文献   

12.
Abstract

The broad host range and superior infectivity of alphaviruses have encouraged the development of efficient expression vectors for Semliki Forest virus (SFV) and Sindbis virus (SIN). The generation of high-titer recombinant alphavirus stocks has allowed high-level expression of a multitude of nuclear, cytoplasmic, membrane-associated and secreted proteins in a variety of different cell lines and primary cell cultures. Despite the viral cytopathogenic effects, functional assays on recombinant proteins are possible for a time-period of at least 24 hours post-infection. The high percentage (80–95%) of primary neurons infected with SFV has allowed localization and functional studies of recombinant proteins in these primary cell cultures. Through multiple infection studies the interaction of receptor and G protein subunits has become feasible. Establishment of efficient scale-up procedures has allowed production of large quantities of recombinant protein. Potential gene therapy applications of alphaviruses could be demonstrated by injection of recombinant SIN particles expressing β-galactosidase into mouse brain. Tissue/cell specific infection has been achieved by introduction of an IgG-binding domain of protein A domain into one of the spike proteins of SIN. This enabled efficient targeting of infection to human lymphoblastoid cells.  相似文献   

13.
BACKGROUND: Semliki Forest virus (SFV) vectors have a great potential for the induction of protective immunity in a large number of clinical conditions including cancer. Such a potential accounts for the huge efforts made to improve the in vivo expression from SFV vectors. It is noteworthy that efficient in vivo expression strongly relies on the ability to deliver high-titre vectors. To achieve this, the generation of recombinant SFV particles, using independent expression systems for structural SFV genes, has been proposed. However, despite several modifications in the production process, a risk of contamination with replication-competent, or partially recombined, virus has remained. METHODS: Here, we exploit the ability of the vesicular stomatitis virus glycoprotein (VSV-G), expressed in trans, to hijack full-length genomic SFV RNA into secreted virus-like particles (VLPs). To allow SFV vector mobilisation, we designed a CMV driven SFV vector in which the internal 26S promoter has been extensively mutated. With this vector, mobilisation events were monitored using the Green Fluorescent Protein (GFP). The production procedure involves a sequential transfection protocol, of plasmids expressing the VSV-G and the SFV vector respectively. RESULTS: We show that the VLPs are effective for cellular delivery of SFV vectors in a broad range of human and non-human cellular targets. Furthermore, production of VLPs is easy and allows, through concentration, the harvest of high-titre vector. CONCLUSIONS: The present paper describes a convenient process aimed at mobilising full length SFV vectors. A major issue to consider, while developing clinically relevant gene transfer vectors, is the risk of undesirable generation of replication competent by-products. Importantly, as the VSV-G gene shares no homology with the SFV genome, our VLPs offer a strong guarantee of biosafety.  相似文献   

14.
Understanding the three-dimensional structure of G protein-coupled receptors (GPCRs) has been limited by the technical challenges associated with expression, purification, and crystallization of membrane proteins, and their low abundance in native tissue. In the first large-scale comparative study of GPCR protein production using recombinant baculovirus, we report the characterization of 16 human receptors. The GPCRs were produced in three insect cell lines and functional protein levels monitored over 72 h using radioligand binding assays. Different GPCRs exhibited widely different expression levels, ranging from less than 1 pmol receptor/mg protein to more than 250 pmol/mg. No single set of conditions was suitable for all GPCRs, and large differences were seen for the expression of individual GPCRs in different cell lines. Closely related GPCRs did not share similar expression profiles; however, high expression (greater than 20 pmol/mg) was achieved for over half the GPCRs in our study. Overall, the levels of protein production compared favourably to other published systems.  相似文献   

15.
Three mammalian expression systems suitable for expressing recombinant receptors have been described. Each is suited to a different aspect of the study of receptors and their behaviour. IRES-based vectors are ideal for creating stable mammalian cell lines suitable for screening receptors using a signalling readout. Unlike traditional vectors they result in almost 100% of cell lines generated expressing a particular receptor, thus increasing the efficiency of cell line generation and increasing the chance of higher expression-level cell lines being generated. They may also be utilized to express more than one protein of interest, for example it is possible to co-express a particular receptor with a particular signalling protein or trafficking protein from a single RNA, thus ensuring that both are expressed simultaneously in the same cell. The ecdysone-inducible expression system is ideal for studying receptor signalling and behaviour. It is possible to alter receptor expression levels in an identical cellular background thus making it possible to study phenomena such as constitutive receptor activity in the absence of agonist. The SFV expression system is ideal for expressing receptors at high levels of a mammalian cell. It is thus a good system for purifying receptors for structural analysis and for providing material for binding assays. All of the expression systems described above have been demonstrated to express seven-transmembrane receptors with the expected pharmacological and functional profile.  相似文献   

16.
The expression of recombinant proteins with the Semliki Forest Virus (SFV) system has been scaled up to bioreactor scale. As a model protein for this study the human 5-HT3 receptor was chosen. The gene for the receptor was subcloned into the SFV expression plasmid pSFV1. Virus production by in vivo packaging and production of the recombinant protein was scaled up, the latter to a reactor volume of 11.5 l. A VibromixTM agitation system was chosen to overcome aggregation problems of BHK cells in suspension. In the process, cells were first grown to a density of 106 cells/ml, the medium was then exchanged with fresh medium and the culture was infected with the recombinant virus at an estimated multiplicity of infection of 30. 24 h post infection we measured an expression level of 3 million functional 5-HT3 receptors per cell. For harvesting, the cells were pelleted by centrifugation. The receptor protein was purified in a single step (Hovius et al., 1998) by exploiting the hexa-His tag at minimal protein loss (51% yield). Experiments to optimise expression resulted in yields up to 8 million receptors per cell, when the pH of a suspension culture was controlled at pH 7.3. Rapid virus generation and protein production, high protein yields as well as successful large scale application have made the SFV expression system attractive to produce large quantities of recombinant protein in a very short time. After optimisation of the expression conditions (in particular by setting the pH at 7.3), yields were increased twofold.  相似文献   

17.
We have modified Semliki Forest virus (SFV) vectors to broaden their application range. Here we describe a series of site-directed mutagenesis experiments on the SFV subgenomic 26S promoter to down-regulate the heterologous gene expression. Several mutants showed a dramatic effect on transgene expression levels in BHK cells. The luciferase activity was reduced to approximately 30%, 3%, and 1% compared to the wild type promoter. Similarly, a decrease in beta-galactosidase activity was observed in BHK cells and after injection into the striatum of male Wistar rats. Novel non-cytopathogenic and temperature-sensitive SFV vectors have recently been developed by introduction of point mutations in the viral nonstructural genes nsP2 and nsP4. These vectors do not show the typical shut down of host cell protein synthesis after SFV infections and therefore allow for a substantially prolonged survival of host cells. Both the mutant vectors demonstrating lower and more physiological expression levels and the non-cytopathogenic vectors should be valuable tools for various applications within receptor research. Furthermore, recent studies suggest that SFV vectors can be efficient gene delivery vehicles for gene therapy applications.  相似文献   

18.
We have modified Semliki Forest virus (SFV) vectors to broaden their application range. Here we describe a series of site-directed mutagenesis experiments on the SFV subgenomic 26S promoter to down-regulate the heterologous gene expression. Several mutants showed a dramatic effect on transgene expression levels in BHK cells. The luciferase activity was reduced to approximately 30%, 3%, and 1% compared to the wild type promoter. Similarly, a decrease in β-galactosidase activity was observed in BHK cells and after injection into the striatum of male Wistar rats. Novel non-cytopathogenic and temperature-sensitive SFV vectors have recently been developed by introduction of point mutations in the viral nonstructural genes nsP2 and nsP4. These vectors do not show the typical shut down of host cell protein synthesis after SFV infections and therefore allow for a substantially prolonged survival of host cells. Both the mutant vectors demonstrating lower and more physiological expression levels and the non-cytopathogenic vectors should be valuable tools for various applications within receptor research. Furthermore, recent studies suggest that SFV vectors can be efficient gene delivery vehicles for gene therapy applications.  相似文献   

19.
Tagged G-protein-coupled receptors (GPCRs) have been used to facilitate intracellular visualization of these receptors. We have used a combination of adenoviral vector gene transfer and tagged olfactory receptors to help visualize mammalian olfactory receptor proteins in the normal olfactory epithelium of rats, and in cell culture. Three recombinant adenoviral vectors were generated carrying variously tagged versions of rat olfactory receptor I7. The constructs include an N-terminal Flag epitope tag (Flag:I7), enhanced green fluorescent protein (EGFP) fusion protein (EGFP:I7), and a C-terminal EGFP fusion (I7:EGFP). These receptor constructs were assayed in rat olfactory sensory neurons (OSNs) and in a heterologous system (HEK 293 cell line) for protein localization and functional expression. Functional expression of the tagged receptor proteins was tested by electroolfactogram (EOG) recordings in the infected rat olfactory epithelium, and by calcium imaging in single cells. Our results demonstrate that the I7:EGFP fusion protein and Flag:I7 are functionally expressed in OSNs while the EGFP:I7 fusion is not, probably due to inappropriate processing of the protein in the cells. These data suggest that a small epitope tag (Flag) at the N-terminus, or EGFP located at the C-terminus of the receptor, does not affect ligand binding or downstream signaling. In addition, both functional fusion proteins (Flag:I7 and I7:EGFP) are properly targeted to the plasma membrane of HEK 293 cells.  相似文献   

20.
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号