首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the degree of similarity between picornavirus proteases, we cloned the genomic cDNAs of an enterovirus, echovirus 9 (strain Barty), and two rhinoviruses, serotypes 1A and 14LP, and determined the nucleotide sequence of the region which, by analogy to poliovirus, encodes the protease. The nucleotide sequence of the region encoding the genome-linked protein VPg, immediately adjacent to the protease, was also determined. Comparison of nucleotide and deduced amino acid sequences with other available picornavirus sequences showed remarkable homology in proteases and among VPgs. Three highly conserved peptide regions were identified in the protease; one of these is specific for human picornaviruses and has no obvious counterpart in encephalomyocarditis virus, foot-and-mouth disease virus, or cowpea mosaic virus proteases. Within the other two peptide regions two conserved amino acids, Cys 147 and His 161, could be the reactive residues of the active site. We used a statistical method to predict certain features of the secondary structures, such as alpha helices, beta sheets, and turns, and found many of these conformations to be conserved. The hydropathy profiles of the compared proteases were also strikingly similar. Thus, the proteases of human picornaviruses very probably have a similar three-dimensional structure.  相似文献   

2.
Schein CH  Volk DE  Oezguen N  Paul A 《Proteins》2006,63(4):719-726
The VPg peptide, which is found in poliovirus infected cells either covalently bound to the 5'-end of both plus and minus strand viral RNA, or in a uridylylated free form, is essential for picornavirus replication. Combining experimental structure and mutation results with molecular modeling suggests a new mechanism for VPg uridylylation, which assigns an additional function, that of scaffold, to the polymerase. The polarity of the NMR structure of VPg is complementary to the binding site on the surface of poliovirus polymerase determined previously by mutagenesis. Docking VPg at this position places the reactive tyrosinate close to the 5'-end of Poly(A)7 RNA when this is bound with its 3'-end in the active site of the polymerase. The triphosphate tail of a UTP moiety, base paired with the 5'-end of the RNA, projects back over the Tyr3-OH and is held in position by conserved positively charged side-chains of VPg. Other conserved residues mediate binding to the polymerase surface and serve as ligands for metal ion catalyzed transphosphorylation. Additional viral proteins or a second polymerase molecule may aid in stabilizing the components of the reaction. In the model complex, VPg can direct its own uridylylation before entering the polymerase active site.  相似文献   

3.
Amongst the picornaviruses, poliovirus encodes a single copy of the genome-linked protein, VPg wheras foot-and-mouth disease virus uniquely encodes three copies of VPg. We have previously shown that a genetically engineered poliovirus genome containing two tandemly arranged VPgs is quasi-infectious (qi) that, upon genome replication, inadvertently deleted one complete VPg sequence. Using two genetically marked viral genomes with two VPg sequences, we now provide evidence that this deletion occurs via homologous recombination. The mechanism was abrogated when the second VPg was engineered such that its nucleotide sequence differed from that of the first VPg sequence by 36%. Such genomes also expressed a qi phenotype, but progeny viruses resulted from (i) random deletions yielding single VPg coding sequences of varying length lacking the Q*G cleavage site between the VPgs and (ii) mutations in the AKVQ*G cleavage sites between the VPgs at either the P4, P1 or P1' position. These variants present a unique genetic system defining the cleavage signals recognized in 3Cpro-catalyzed proteolysis. We propose a recognition event in the cis cleavages of the polyprotein P2-P3 region, and we present a hypothesis why the poliovirus genome does not tolerate two tandemly arranged VPg sequences.  相似文献   

4.
The nucleotide sequence corresponding to the P3 region of the hepatitis A virus (HAV) polyprotein genome was determined from cloned cDNA and translated into an amino acid sequence. Comparison of the amino acid sequences of the genome-linked proteins (VPgs) of other picornaviruses with the predicted amino acid sequence of HAV was used to locate the primary structure of a putative VPg within the genome of HAV. The sequence of HAV VPg, like those of other picornaviral VPg molecules, contains a tyrosine residue as a potential binding site for HAV RNA in position 3 from its N terminus. The potential cleavage sites to generate VPg from a putative HAV polyprotein are between glutamic acid and glycine at the N terminus and glutamic acid and serine or glutamine and serine at the C terminus. A synthetic peptide corresponding to 10 amino acids of the predicted C terminus of HAV VPg induced anti-peptide antibodies in rabbits when it was conjugated to thyroglobulin as a carrier. These antibodies were specific for the peptide and precipitated VPg, linked to HAV RNA, from purified HAV and from lysates of HAV-infected cells. The precipitation reaction was blocked by the synthetic peptide (free in solution or coupled to carrier proteins) and prevented by pretreatment of VPg RNA with protease. Thus, our predicted amino acid sequence is colinear with the nucleotide sequence of the VPg gene in the HAV genome. From our results we concluded that HAV has the typical organization of picornavirus genes in this part of its genome. Similarity among hydrophobicity patterns of amino acid sequences of different picornaviral VPgs was revealed in hydropathy plots. Thus, the VPg of HAV appears to be closely related to VPg1 and VPg2 of foot-and-mouth disease virus. In contrast, HAV VPg has a unique isoelectric point (pI = 7.15) among the picornavirus VPgs.  相似文献   

5.
The first step in poliovirus (PV) RNA synthesis is the covalent linkage of UMP to the terminal protein VPg. This reaction can be studied in vitro with two different assays. The simpler assay is based on a poly(A) template and requires synthetic VPg, purified RNA polymerase 3D(pol), UTP, and a divalent cation. The other assay uses specific viral sequences [cre(2C)] as a template for VPg uridylylation and requires the addition of proteinase 3CD(pro). Using one or both of these assays, we analyzed the VPg specificities and metal requirements of the uridylylation reactions. We determined the effects of single and double amino acid substitutions in VPg on the abilities of the peptides to serve as substrates for 3D(pol). Mutations in VPg, which interfered with uridylylation in vitro, were found to abolish viral growth. A chimeric PV containing the VPg of human rhinovirus 14 (HRV14) was viable, but substitutions of HRV2 and HRV89 VPgs for PV VPg were lethal. Of the three rhinoviral VPgs tested, only the HRV14 peptide was found to function as a substrate for PV1(M) 3D(pol) in vitro. We also examined the metal specificity of the VPg uridylylation reaction on a poly(A) template. Our results show a strong preference of the RNA polymerase for Mn(2+) as a cofactor compared to Mg(2+) or other divalent cations.  相似文献   

6.
M M Falk  F Sobrino    E Beck 《Journal of virology》1992,66(4):2251-2260
In order to analyze the function of VPg amplification in aphthoviruses, we have undertaken the first mutational analysis of the repetitive VPg-coding region using an improved foot-and-mouth disease virus (FMDV) cDNA clone from which infective viral RNA was synthesized. A set of VPg mutants was constructed by site-directed mutagenesis which includes different VPg deletion mutations, a VPg insertion mutation, and amino acid residue replacement mutations that interfere with binding of the VPg protein to the viral RNA and with its proteolytic processing. Our results revealed that an amazing flexibility in the number of VPgs is tolerated in FMDV. Optimal viability is given when three VPgs are encoded. Deletion as well as insertion of one VPg gene still resulted in infective particle production. Infective particle formation was observed as long as one VPg remained intact. No obvious differences in the individual VPg molecules with regard to their promoting viral RNA synthesis were observed, indicating that all three VPgs can act equally in FMDV replication. Mutant polyprotein processing was comparable to that of the wild-type virus. However, VPg mutants showed reduced viral RNA synthesis levels after infection. The levels of viral RNA synthesis and infective particle formation were found to correlate with the number of functional VPgs left in the mutant virus. These findings suggest a direct VPg gene dosage effect on viral RNA synthesis, with a secondary effect on infective particle formation.  相似文献   

7.
M H Baron  D Baltimore 《Cell》1982,28(2):395-404
The genome-linked protein (VPg) of poliovirus has been chemically synthesized, coupled to bovine serum albumin carrier and injected into rabbits. An antibody response was elicited not only by the full-length synthetic VPg peptide, but also by a synthetic 14-amino acid carboxy-terminal peptide. All antisera reacted with virus-specific proteins from HeLa cells infected with poliovirus. Three of these proteins have previously been implicated by others as precursors of VPg. No free cytoplasmic VPg could be detected, and the antibodies did not react with radiolabeled proteins from uninfected cells.  相似文献   

8.
Replication of picornaviral genomes requires recognition of at least three cis-acting replication elements: oriL, oriI, and oriR. Although these elements lack an obvious consensus sequence or structure, they are all recognized by the virus-encoded 3C protein. We have studied the poliovirus 3C-oriI interaction in order to begin to decipher the code of RNA recognition by picornaviral 3C proteins. oriI is a stem-loop structure that serves as the template for uridylylation of the peptide primer VPg by the viral RNA-dependent RNA polymerase. In this report, we have used nuclear magnetic resonance (NMR) techniques to study 3C alone and in complex with two single-stranded RNA oligonucleotides derived from the oriI stem. The (1)H-(15)N spectra of 3C recorded in the presence of these RNAs revealed site-specific chemical shift perturbations. Residues that exhibit significant perturbations are primarily localized in the amino terminus and in a highly conserved loop between residues 81 and 89. In general, the RNA-binding site defined in this study is consistent with predictions based on biochemical and mutagenesis studies. Although some residues implicated in RNA binding by previous studies are perturbed in the 3C-RNA complex reported here, many are unique. These studies provide unique site-specific insight into residues of 3C that interact with RNA and set the stage for detailed structural investigation of the 3C-RNA complex by NMR. Interpretation of our results in the context of an intact oriI provides insight into the architecture of the picornavirus VPg uridylylation complex.  相似文献   

9.
Two critical interactions within the poliovirus RNA replication complex are those of the RNA-dependent RNA polymerase 3D with the viral proteins 3AB and VPg. 3AB is a membrane-binding protein responsible for the localization of the polymerase to the membranous vesicles at which replication occurs. VPg (a peptide comprising the 3B region of 3AB) is the 22-residue soluble product of 3AB cleavage and serves as the protein primer for RNA replication. The detailed interactions of these proteins with the RNA-dependent RNA polymerase 3D were analyzed to elucidate the precise roles of 3AB and VPg in the viral RNA replication complex. Using a membrane-based pull-down assay, we have identified a binding "hot-spot" spanning residues 100 to 104 in the 3B (VPg) region of 3AB which plays a critical role in mediating the interaction of 3AB with the polymerase. Isothermal titration calorimetry shows that the interaction of VPg with 3D is enthalpically driven, with a dissociation constant of 11 microM. Mutational analyses of VPg indicate that a subset of the residues important for 3AB-3D binding are also important for VPg-3D binding. Two residues in particular, P14 and R17, were shown to be absolutely critical for the binding interaction. This work provides the direct characterization of two binding interactions critical for the replication of this important class of viruses and identifies a conserved polymerase binding sequence responsible for targeting the polymerase.  相似文献   

10.
Olspert A  Arike L  Peil L  Truve E 《FEBS letters》2011,585(19):2979-2985
Positive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg.  相似文献   

11.
Using a rapid phenol extraction assay, an enzyme was purified from uninfected HeLa cells that can cleave the 5'-terminal protein (VPg) from poliovirus RNA. Both cytoplasmic and nuclear extracts had enzymes with similar behavior. A polypeptide of molecular weight 27,000 was the major one present in the purified preparation. Assuming that this protein is the enzyme, a very low turnover number was calculated for it. The purified enzyme would cleave the tyrosine-phosphate bond linking VPg to poliovirus RNA with minimal degradation of the RNA or of VPg. If the RNA was first treated with proteinase K to degrade VPg, leaving a small peptide on the RNA, this peptide could also be removed by the enzyme. If the RNA was degraded with T1 RNase, leaving VPg attached to a nonanucleotide, the enzyme still would cleave off VPg, although incompletely. If the RNA was degraded completely, leaving either pUp or pU attached to VPg, the enzyme would not remove the nucleotides from the protein. Thus, for the enzyme to be active requires some length of polynucleotide attached to the protein but only a short peptide need be present for the enzyme to act.  相似文献   

12.
Potato virus Y (PVY) is a common potyvirus of agricultural importance, belonging to the picornavirus superfamily of RNA plus-stranded viruses. A covalently linked virus-encoded protein VPg required for virus infectivity is situated at the 5' end of potyvirus RNA. VPg seems to be involved in multiple interactions, both with other viral products and host proteins. VPgs of potyviruses have no known homologs, and there is no atomic structure available. To understand the molecular basis of VPg multifunctionality, we have analyzed structural features of VPg from PVY using structure prediction programs, functional assays, and biochemical and biophysical analyses. Structure predictions suggest that VPg exists in a natively unfolded conformation. In contrast with ordered proteins, PVY VPg is not denatured by elevated temperatures, has sedimentation values incompatible with a compact globular form, and shows a CD spectrum of a highly disordered protein, and HET-HETSOFAST NMR analysis suggests the presence of large unstructured regions. Although VPg has a propensity to form dimers, no functional differences were seen between the monomer and dimer. These data strongly suggest that the VPg of PVY should be classified among intrinsically disordered proteins. Intrinsic disorder lies at the basis of VPg multifunctionality, which is necessary for virus survival in the host.  相似文献   

13.
The amino acid sequences deduced from the nucleic acid sequences of several animal picornaviruses and cowpea mosaic virus (CPMV), a plant virus, were compared. Good homology was found between CPMV and the picornaviruses in the region of the picornavirus 2C (P2-X protein), VPg, 3C pro (proteinase) and 3D pol (RNA polymerase) regions. The CPMV B genome was found to have a similar gene organization to the picornaviruses. A comparison of the 3C pro (proteinase) regions of all of the available picornavirus sequences and CPMV allowed us to identify residues that are completely conserved; of these only two residues, Cys-147 and His-161 (poliovirus proteinase) could be the reactive residues of the active site of a proteinase with analogous mechanism to a known proteinase. We conclude that the proteinases encoded by these viruses are probably cysteine proteinases, mechanistically related, but not homologous to papain.  相似文献   

14.
A tandem repeat gene in a picornavirus.   总被引:17,自引:6,他引:11       下载免费PDF全文
Three closely related genes for the small genome-linked protein (VPg) of picornaviruses have been identified by sequence analysis as a tandem repeat in the genome of Foot and Mouth Disease Virus (FMDV), strain O1K. This unusual structure was also found in the genome of strain C1O, belonging to a different FMDV serotype. Predicted biochemical properties of the three VPg gene products are in excellent agreement with the data from protein analysis of a heterogeneous VPg population from a third FMDV serotype, strain A10 (1). Taken together, these data indicate that the VPgs from all three genes function equally well in vivo. This is the first report of a tandem repeat gene in a viral genome.  相似文献   

15.
Picornaviruses have a peptide termed VPg covalently linked to the 5'-end of the genome. Attachment of VPg to the genome occurs in at least two steps. First, Tyr-3 of VPg, or some precursor thereof, is used as a primer by the viral RNA-dependent RNA polymerase, 3Dpol, to produce VPg-pUpU. Second, VPg-pUpU is used as a primer to produce full-length genomic RNA. Production of VPg-pUpU is templated by a single adenylate residue located in the loop of an RNA stem-loop structure termed oriI by using a slide-back mechanism. Recruitment of 3Dpol to and its stability on oriI have been suggested to require an interaction between the back of the thumb subdomain of 3Dpol and an undefined region of the 3C domain of viral protein 3CD. We have performed surface acidic-to-alanine-scanning mutagenesis of 3C to identify the surface of 3C with which 3Dpol interacts. This analysis identified numerous viable poliovirus mutants with reduced growth kinetics that correlated to reduced kinetics of RNA synthesis that was attributable to a change in VPg-pUpU production. Importantly, these 3C derivatives were all capable of binding to oriI as well as wild-type 3C. Synthetic lethality was observed for these mutants when placed in the context of a poliovirus mutant containing 3Dpol-R455A, a residue on the back of the thumb required for VPg uridylylation. These data were used to guide molecular docking of the structures for a poliovirus 3C dimer and 3Dpol, leading to a structural model for the 3C(2)-3Dpol complex that extrapolates well to all picornaviruses.  相似文献   

16.
Q Reuer  R J Kuhn    E Wimmer 《Journal of virology》1990,64(6):2967-2975
Viral RNA synthesis was assayed in HeLa cells transfected with nonviable poliovirus RNA mutated in the genome-linked protein VPg-coding region. The transfecting RNA was transcribed in vitro from full-length poliovirus type 1 (Mahoney) cDNA containing a VPg mutagenesis cartridge. Hybridization experiments using ribonucleotide probes specific for the 3' end of positive- and negative-sense poliovirus RNA indicated that all mutant RNAs encoding a linking tyrosine in position 3 or 4 of VPg were replicated even though no virus was produced. VPg, but no VPg precursor, was found to be linked to the 5' end of the newly synthesized RNA. Encapsidated mutant RNAs were not found in transfected-cell lysates. After extended maintenance of transfected HeLa cells, a viable revertant of one of the nonviable RNAs was recovered; the revertant lost the lethal lesion in VPg by restoring the wild-type amino acid, but it retained all other nucleotide changes introduced during construction of the mutagenesis cartridge. Mutant RNA encoding phenylalanine or serine rather than tyrosine, the linking amino acid in VPg, was not replicated in transfected cells. A chimeric mutant containing the VPg-coding region of coxsackievirus within the poliovirus genome was viable but displayed impaired multiplication. A poliovirus-coxsackievirus chimera lacking a linking tyrosine in VPg was nonviable and replication-negative. The results indicate that a linkage-competent VPg is necessary for poliovirus RNA synthesis to occur but that a step in poliovirus replication other than initiation of RNA synthesis can be interrupted by lethal mutations in VPg.  相似文献   

17.
The RNA-dependent RNA polymerase (RdRp) is a central piece in the replication machinery of RNA viruses. In picornaviruses this essential RdRp activity also uridylates the VPg peptide, which then serves as a primer for RNA synthesis. Previous genetic, binding, and biochemical data have identified a VPg binding site on poliovirus RdRp and have shown that is was implicated in VPg uridylation. More recent structural studies have identified a topologically distinct site on the closely related foot-and-mouth disease virus RdRp supposed to be the actual VPg-primer-binding site. Here, we report the crystal structure at 2.5-Å resolution of active coxsackievirus B3 RdRp (also named 3Dpol) in a complex with VPg and a pyrophosphate. The pyrophosphate is situated in the active-site cavity, occupying a putative binding site either for the coproduct of the reaction or an incoming NTP. VPg is bound at the base of the thumb subdomain, providing first structural evidence for the VPg binding site previously identified by genetic and biochemical methods. The binding mode of VPg to CVB3 3Dpol at this site excludes its uridylation by the carrier 3Dpol. We suggest that VPg at this position is either uridylated by another 3Dpol molecule or that it plays a stabilizing role within the uridylation complex. The CVB3 3Dpol/VPg complex structure is expected to contribute to the understanding of the multicomponent VPg-uridylation complex essential for the initiation of genome replication of picornaviruses.  相似文献   

18.
Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for viral RNA synthesis. As a consequence, all newly formed viral RNA molecules possess a covalently linked VPg peptide. It is known that VPg is enzymatically released from the incoming viral RNA by a host protein, called TDP2, but it is still unclear whether the release of VPg is necessary to initiate RNA translation. To study the possible requirement of VPg release for RNA translation, we developed a novel method to modify the genomic viral RNA with VPg linked via a ‘non-cleavable’ bond. We coupled an azide-modified VPg peptide to an RNA primer harboring a cyclooctyne [bicyclo[6.1.0]nonyne (BCN)] by a copper-free ‘click’ reaction, leading to a VPg-triazole-RNA construct that was ‘non-cleavable’ by TDP2. We successfully ligated the VPg-RNA complex to the viral genomic RNA, directed by base pairing. We show that the lack of VPg unlinkase does not influence RNA translation or replication. Thus, the release of the VPg from the incoming viral RNA is not a prerequisite for RNA translation or replication.  相似文献   

19.
The viral genome-linked protein (VPg) of Potyviruses is covalently attached to the 5' end of the genomic RNA. Towards biophysical characterization, the VPg coding region of Cardamom mosaic virus (CdMV) was amplified from the cDNA and expressed in E. coli. Most of the expressed VPg aggregated as inclusion bodies that were solubilized with urea and refolded with L-arginine hydrochloride. The various forms of CdMV VPg (native, denatured and refolded) were purified and the conformational variations between these forms were observed with fluorescence spectroscopy. Native and refolded CdMV VPg showed unordered secondary structure in the circular dichroism (CD) spectrum. The model of CdMV VPg was built based on the crystal structure of phosphotriesterase (from Pseudomonas diminuta), which had the maximum sequence homology with VPg to identify the arrangement of conserved amino acids in the protein to study the functional diversity of VPg. This is the first report on the VPg of CdMV, which is classified as a new member of the Macluravirus genus of the Potyviridae family.  相似文献   

20.
The cis-acting replication element (CRE) is a 61-nucleotide stem-loop RNA structure found within the coding sequence of poliovirus protein 2C. Although the CRE is required for viral RNA replication, its precise role(s) in negative- and positive-strand RNA synthesis has not been defined. Adenosine in the loop of the CRE RNA structure functions as the template for the uridylylation of the viral protein VPg. VPgpUpU(OH), the predominant product of CRE-dependent VPg uridylylation, is a putative primer for the poliovirus RNA-dependent RNA polymerase. By examining the sequential synthesis of negative- and positive-strand RNAs within preinitiation RNA replication complexes, we found that mutations that disrupt the structure of the CRE prevent VPg uridylylation and positive-strand RNA synthesis. The CRE mutations that inhibited the synthesis of VPgpUpU(OH), however, did not inhibit negative-strand RNA synthesis. A Y3F mutation in VPg inhibited both VPgpUpU(OH) synthesis and negative-strand RNA synthesis, confirming the critical role of the tyrosine hydroxyl of VPg in VPg uridylylation and negative-strand RNA synthesis. trans-replication experiments demonstrated that the CRE and VPgpUpU(OH) were not required in cis or in trans for poliovirus negative-strand RNA synthesis. Because these results are inconsistent with existing models of poliovirus RNA replication, we propose a new four-step model that explains the roles of VPg, the CRE, and VPgpUpU(OH) in the asymmetric replication of poliovirus RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号