首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expanding the repertoire of reactions available to enzymes is an enduring challenge in biocatalysis. Owing to the synthetic versatility of transition metals, metalloenzymes have been favored targets for achieving new catalytic functions. Although less well explored, enzymes lacking metal centers can also be effective catalysts for non-natural reactions, providing access to reaction modalities that compliment those available to metals. By understanding how these activation modes can reveal new functions, strategies can be developed to access novel biocatalytic reactions. This review will cover discoveries in the last two years which access catalytic reactions that go beyond the native repertoire of metal-free biocatalysts.  相似文献   

2.
The relationships between the enantiomer excess of product in catalytic asymmetric reactions and the structures of the catalysts or reagents in several asymmetric reactions were studied using a backpropagation (BP) neural network with topological indices and their chiral expansions. The trained network can be used to screen new asymmetric catalysts, estimate catalytic effects, design reaction environments, and prove or improve the proposed reaction mechanism.  相似文献   

3.
In vitro selection from combinatorial nucleic acid libraries has provided new RNA and DNA molecules that have catalytic properties. Catalyzed reactions now go far beyond self-modifying reactions of nucleic acid molecules. The future application of in vitro selected RNA and DNA catalysts in bioorganic synthesis appears promising.  相似文献   

4.
The ongoing trends to process improvements, cost reductions and increasing quality, safety, health and environment requirements of industrial chemical transformations have strengthened the translation of global biocatalysis research work into industrial applications. One focus has been on biocatalytic single-step reactions with one or two substrates, the identification of bottlenecks and molecular as well as engineering approaches to overcome these bottlenecks. Robust industrial procedures have been established along classes of biocatalytic single-step reactions. Multi-step reactions and multi-component reactions (MCRs) enable a bottom-up approach with biocatalytic reactions working together in one compartment and recations hindering each other within different compartments or steps. The understanding of the catalytic functions of known and new enzymes is key for the development of new sustainable chemical transformations.  相似文献   

5.
Site-specific recombination reactions bring about controlled rearrangements of DNA molecules by cutting the DNA at precise points and rejoining the ends to new partners. The recombinases that catalyse these reactions can be grouped into two families by amino acid sequence homology. We describe our current understanding of how these proteins catalyse recombination, and show how the catalytic mechanisms of the two families differ.  相似文献   

6.
催化抗体研究新进展   总被引:3,自引:0,他引:3  
催化抗体也叫抗体酶,是具有催化活性的免疫球蛋白.由于它兼具抗体的高度选择性和酶的高效催化性,因而催化抗体制备技术的开发预示着可以人为生产适应各种用途的,特别是自然界不存在的高效催化剂,对生物学、化学和医学等多种学科有重要的理论意义和实用价值.综述了催化抗体研究的最新进展,讨论了该领域目前存在的问题,提出了解决这些问题的可能办法.  相似文献   

7.
Introductory courses in biochemistry teach that enzymes are specific for their substrates and the reactions they catalyze. Enzymes diverging from this statement are sometimes called promiscuous. It has been suggested that relaxed substrate and reaction specificities can have an important role in enzyme evolution; however, enzyme promiscuity also has an applied aspect. Enzyme condition promiscuity has, for a long time, been used to run reactions under conditions of low water activity that favor ester synthesis instead of hydrolysis. Together with enzyme substrate promiscuity, it is exploited in numerous synthetic applications, from the laboratory to industrial scale. Furthermore, enzyme catalytic promiscuity, where enzymes catalyze accidental or induced new reactions, has begun to be recognized as a valuable research and synthesis tool. Exploiting enzyme catalytic promiscuity might lead to improvements in existing catalysts and provide novel synthesis pathways that are currently not available.  相似文献   

8.
It is proposed that enzymic phosphoryl-transfer reactions occur by concerted, step-wise, associative (phosphorane-intermediate) or dissociative (metaphosphate-intermediate) mechanisms, as dictated by the catalytic scaffold and the reactants. During the evolution of a phosphotransferase family, the mechanism of the phosphoryl-transfer reaction is in constant flux, potentially changing with each adaptation of the catalytic scaffold to a new phosphoryl-donor-acceptor pair. Phosphotransferases of the recently discovered haloacid dehalogenase superfamily of enzymes, one of the largest and most ubiquitous of the phosphotransferase families characterized to date, are described in the context of the co-evolution of the catalytic scaffold and mechanism.  相似文献   

9.
A new series of chiral cis-3-aminoazetidines have been prepared from (S)-1-phenylethylamine. The catalytic activity of the new ligands has been tested in standard asymmetric reactions, in most cases moderate to good yields and moderate enantioselectivity have been observed.  相似文献   

10.
The expansion of functions in an enzyme superfamily is thought to occur through recruitment of latent promiscuous functions within existing enzymes. Thus, the promiscuous activities of enzymes represent connections between different catalytic landscapes and provide an additional layer of evolutionary connectivity between functional families alongside their sequence and structural relationships. Functional connectivity has been observed between individual functional families; however, little is known about how catalytic landscapes are connected throughout a highly diverged superfamily. Here, we describe a superfamily-wide analysis of evolutionary and functional connectivity in the metallo-β-lactamase (MBL) superfamily. We investigated evolutionary connections between functional families and related evolutionary to functional connectivity; 24 enzymes from 15 distinct functional families were challenged against 10 catalytically distinct reactions. We revealed that enzymes of this superfamily are generally promiscuous, as each enzyme catalyzes on average 1.5 reactions in addition to its native one. Catalytic landscapes in the MBL superfamily overlap substantially; each reaction is connected on average to 3.7 other reactions whereas some connections appear to be unrelated to recent evolutionary events and occur between chemically distinct reactions. These findings support the idea that the highly distinct reactions in the MBL superfamily could have evolved from a common ancestor traversing a continuous network via promiscuous enzymes. Several functional connections (e.g., the lactonase/phosphotriesterase and phosphonatase/phosphodiesterase/arylsulfatase reactions) are also observed in structurally and evolutionary distinct superfamilies, suggesting that these catalytic landscapes are substantially connected. Our results show that new enzymatic functions could evolve rapidly from the current diversity of enzymes and range of promiscuous activities.  相似文献   

11.
The catalytic Pictet-Spengler reactions proceeded in high yields with high regioselectivity in the presence of a catalytic amount of Yb(OTf)3 and a dehydrating agent at room temperature. High regioselectivities were obtained in these reactions, and it is suggested that the reactions proceeded under kinetic control.  相似文献   

12.
Guo J  Mao J 《Chirality》2009,21(6):619-627
A new bifunctional copper-based catalytic system has been developed from readily available salen ligand 7 together with Cu(OAc)(2).H(2)O in situ for asymmetric nitro-aldol reactions between nitromethane and aldehydes, affording corresponding adducts with moderate to good yields and enantioselectivities.  相似文献   

13.
James CL  Viola RE 《Biochemistry》2002,41(11):3720-3725
The bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli catalyzes non-consecutive reactions in the aspartate pathway of amino acid biosynthesis. Both catalytic activities are subject to allosteric regulation by the end product amino acid L-threonine. To examine the kinetics and regulation of the enzymes in this pathway, each of these catalytic domains were separately expressed and purified. The separated catalytic domains remain active, with each of their catalytic activities enhanced in comparison to the native enzyme. The allosteric regulation of the kinase activity is lost, and regulation of the dehydrogenase activity is dramatically decreased in these separate domains. To create a new bifunctional enzyme that can catalyze consecutive metabolic reactions, the aspartokinase I domain was fused to the enzyme that catalyzes the intervening reaction in the pathway, aspartate semialdehyde dehydrogenase. A hybrid bifunctional enzyme was also created between the native monofunctional aspartokinase III, an allosteric enzyme regulated by lysine, and the catalytic domain of homoserine dehydrogenase I with its regulatory interface domain still attached. In this hybrid the kinase activity remains sensitive to lysine, while the dehydrogenase activity is now regulated by both threonine and lysine. The dehydrogenase domain is less thermally stable than the kinase domain and becomes further destabilized upon removal of the regulatory domain. The more stable aspartokinase III is further stabilized against thermal denaturation in the hybrid bifunctional enzyme and was found to retain some catalytic activity even at temperatures approaching 100 degrees C.  相似文献   

14.
Recent structural and mechanistic analysis of oxygenase enzymes together with the study of biomimetic model reactions have provided new insights into the catalytic mechanisms of oxygenase-catalysed reactions. High-valent iron-oxo intermediates have been implicated in heme- and pterin-dependent mono-oxygenases. Structural motifs have been identified for binding of non-heme iron(II) (His,His,Glu) and iron(III) (His(2)Tyr(2)) in non-heme-dependent dioxygenases, but additional factors influencing the choice of reaction pathway are emerging from model studies.  相似文献   

15.
The creation of novel enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Here we describe two new algorithms for enzyme design that employ hashing techniques to allow searching through large numbers of protein scaffolds for optimal catalytic site placement. We also describe an in silico benchmark, based on the recapitulation of the active sites of native enzymes, that allows rapid evaluation and testing of enzyme design methodologies. In the benchmark test, which consists of designing sites for each of 10 different chemical reactions in backbone scaffolds derived from 10 enzymes catalyzing the reactions, the new methods succeed in identifying the native site in the native scaffold and ranking it within the top five designs for six of the 10 reactions. The new methods can be directly applied to the design of new enzymes, and the benchmark provides a powerful in silico test for guiding improvements in computational enzyme design.  相似文献   

16.
Combinatorial chemistry has recently burst on the scene as a valuable tool for the discovery of new drug candidates. The ability to synthesize hundreds of compounds for screening is a useful complement to rational drug design. There are many similarities between the design of new therapeutic agents and the development of new asymmetric ligands, the most important of which is the limitation of a rational design strategy. For this reason a program was begun that would allow the use of combinatorial technology in the development of new ligands for transition metal catalyzed asymmetric reactions. Because of the large number of catalytic reactions they are involved in the system was based around phosphine ligands. This paper reports the synthesis of phosphine derivatives of alanine, proline, and the aromatic amino acids tyrosine and hydroxyphenylglycine. Examples of the use of these amino acids in the synthesis of peptides possessing helical and beta-turn secondary structures are presented. Metal complexes of these peptide-based ligands are used in hydrogenation and alkylation reactions.  相似文献   

17.
The past few years have seen significant advances in research related to the 'latent skills' of enzymes - namely, their capacity to promiscuously catalyze reactions other than the ones they evolved for. These advances regard (i) the mechanism of catalytic promiscuity - how enzymes, that generally exert exquisite specificity, promiscuously catalyze other, and sometimes barely related, reactions; (ii) the evolvability of promiscuous functions - namely, how latent activities evolve further, and in particular, how promiscuous activities can firstly evolve without severely compromising the original activity. These findings have interesting implications on our understanding of how new enzymes evolve. They support the key role of catalytic promiscuity in the natural history of enzymes, and suggest that today's enzymes diverged from ancestral proteins catalyzing a whole range of activities at low levels, to create families and superfamilies of potent and highly specialized enzymes.  相似文献   

18.
土壤水解酶类催化动力学研究进展   总被引:11,自引:3,他引:11  
土壤水解酶是存在于土壤中的一种重要的酶类,参与了土壤中为数众多的重要生物化学反应,与土壤中多种营养元素转化密切相关其催化反应的动力学研究常用来阐明其催化过程的特性、酶的本质属性及其对环境变化的响应等,研究土壤水解酶动力学特征对探讨其来源、性质及影响因素,对进一步调控多种营养元素参与的反应过程有着重要意义。文中概述了土壤水解酶的种类及其参与的生物化学反应;探讨了土壤水解酶动力学研究的理论基础;综述了土壤水解酶催化动力学研究的进展和影响因素,在此基础上,对今后研究提出了几点建议。  相似文献   

19.
Nagano N  Noguchi T  Akiyama Y 《Proteins》2007,66(1):147-159
Catalytic mechanisms of 270 enzymes from 131 superfamilies, mainly hydrolases and transferases, were analyzed based on their enzyme structures. A method of systematic comparison and classification of the catalytic reactions was developed. Hydrolysis and transfer reactions closely resemble one another, displaying common mechanisms, single displacement, and double displacement. These displacement mechanisms might be further subclassified according to the type of catalytic factors and nucleophilic substitution involved. Several types of catalytic factors exist: nucleophile, acid, base, stabilizer, modulator, cofactors. Nucleophilic substitution might be categorized as S(N)1/S(N)2 (or dissociative/associative) reactions. The classification indicates that some mechanisms favor particular types of catalytic factors. In hydrolyses of amide bonds and phosphoric ester bonds, mechanisms with single displacement tend to use inorganic cofactors such as zinc and magnesium ions as important catalysts, whereas those with double displacement frequently do not use such cofactors. In contrast, hydrolyses of O-glycoside bond rarely use such cofactors, with one exception. The trypsin-like hydrolytic reaction, which is catalyzed by the classic catalytic triad comprising serine/histidine/aspartate, can be considered as a "super-reaction" because it is observed in at least three nonhomologous enzymes, whereas most reactions are singlets without any nonhomologous enzymes. By dividing complex reactions into several reactions, correlations between active site structures and catalytic functions can be suggested. This classification method is applicable to other reactions such as elimination and isomerization. Furthermore, it will facilitate annotation of enzyme functions from 3D patterns of enzyme active sites. The classification is available at http://mbs.cbrc.jp/EzCatDB/RLCP/index.html.  相似文献   

20.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号