首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Treatment of isolated rat adipocytes with adrenocorticotropin (ACTH) caused a 1.5-fold increase in phospholipid methyltransferase activity within 5 min. This effect of ACTH was concentration-dependent with maximal activation at 2 milliunits/ml ACTH, and was reproduced by dibutyryl cyclic AMP. ACTH (2 milliunits/ml) caused an increase in the Vmax value of phospholipid methyltransferase without changing the Km for S-adenosyl-L-methionine. Insulin caused a concentration-dependent inhibition of both control and ACTH-stimulated phospholipid methyltransferase. Half-maximal inhibition by insulin was demonstrated with 5 microunits/ml insulin in control cells and with 25 microunits/ml insulin in ACTH-stimulated cells. The rapid and sensitive activation of adipocyte phospholipid methyltransferase by ACTH and inhibition by insulin are consistent with a role for this pathway in the hormonal response of the adipocyte.  相似文献   

2.
A glycophospholipid has been purified from rat liver membranes and shown to copurify with an insulin-sensitive glycophospholipid isolated from H35 hepatoma cells. The polar head group of this glycophospholipid is a phospho-oligosaccharide generated by treatment with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus. It has been proposed that this phospho-oligosaccharide, which is also generated in response to insulin, may play a role in insulin action. Incubation of the catalytic subunit of cyclic AMP-dependent protein kinase with this phospho-oligosaccharide inhibited the activity of the kinase to phosphorylate histone IIA, a purified preparation of phospholipid methyltransferase and kemptide, a phosphate-accepting peptide. Inhibition of kinase activity was dose-dependent and 50% inhibition of histone phosphorylation was demonstrated with a concentration of phospho-oligosaccharide of around 2 microM. This effect was demonstrated in the presence of ATP at concentrations up to 1 mM, indicating that the phospho-oligosaccharide acts at physiological concentrations of ATP and that it does not compete with this nucleotide for the same binding site in the kinase. Inhibition by the phospho-oligosaccharide of kinase activity could be reversed by dilution or dialysis and was not reproduced by up to 50 microM myo-inositol, glucosamine, galactose, myo-inositol 1-phosphate, glucosamine 1-phosphate, galactose 1-phosphate or phosphorylcholine. The inhibitory activity was resistant to mild acid treatment but was labile to treatment with alkali, exposure to nitrous acid or incubation with sodium periodate. The phospho-oligosaccharide had no effect on the phosphorylation of lysine-rich histone by rat brain protein kinase C and on the binding of cyclic AMP to a cyclic AMP-dependent protein kinase. In conclusion, the data in this study suggested that a phospho-oligosaccharide generated from an insulin-sensitive glycophospholipid may play a role in insulin action by modulating cyclic AMP-dependent protein kinase activity.  相似文献   

3.
Addition of insulin to isolated rat hepatocytes prelabeled with [32P]phosphate inhibited glucagon-dependent phospholipid methyltransferase phosphorylation and activation. Insulin alone had no effect on either the phosphorylation of the enzyme or on its activity. The effect of insulin on glucagon-dependent phospholipid methyltransferase phosphorylation was dose-dependent and occurred at physiological doses of the hormone (10(-11)-10(-10) M). Analysis of 32P-labeled peptides after digestion with trypsin revealed only one site of phosphorylation regulated by glucagon (10(-8) M) in isolated rat hepatocytes. This site, as analyzed by HPLC and thin-layer chromatography, coincided with that phosphorylated by the cAMP-dependent protein kinase using purified rat liver phospholipid methyltransferase.  相似文献   

4.
Changes in isoprenaline-sensitive phospholipid methyltransferase were studied in hepatocytes isolated from juvenile, mature and adrenalectomized rats. Isoprenaline produced greater stimulation of cyclic AMP accumulation in juvenile and mature adrenalectomized rats than in mature animals. Similarly, isoprenaline stimulated phospholipid methyltransferase in juvenile and mature adrenalectomized rats but had no effect in mature animals. Isoprenaline-mediated activation of phospholipid methyltransferase in adrenalectomized rats was time- and dose-dependent. In hepatocytes isolated from adrenalectomized rats incubated with [Me-3H]methionine or [3H]-ethanolamine the addition of isoprenaline increased the amount of radioactivity incorporated into phosphatidylcholine. The activation by isoprenaline of phospholipid methyltransferase was abolished by the beta-blocker propranolol and by insulin. These results indicate that rat liver the occupation of functional beta-receptors causes a stimulation of phospholipid methylation. It is suggested that, as reported previously, cyclic AMP activates phospholipid methyltransferase.  相似文献   

5.
The present study investigated the effect of insulin on phosphatidylcholine turnover in rat adipocytes labelled to equilibrium with [14C]-choline. Insulin induced a rapid turnover of this major phospholipid that was maximal by 1 min and transient in nature. Following a 1 min stimulation of the cells with insulin at a maximally effective concentration (7 nM), a 4–6% decrease in the percentage of total cellular choline associated with this phospholipid was observed. This reflected a significant transient increase in the percentage of total cellular choline associated with phosphorylcholine, which together with diacylglycerol are the phospholipase C cleavage products of phosphatidylcholine. These effects were observed over a physiological range of insulin concentrations. No effect of insulin on any other choline phospholipid or metabolite (sphingomyelin, lysophophatidylcholine, glycerophosphocholine or choline) was seen. These results suggest that insulin stimulates a phospholipase C-mediated turnover of phosphatidylcholine in rat adipocytes. The rapid nature of this turnover suggests a potential role in signal transduction.  相似文献   

6.
The present studies demonstrate that treatment of rat adipocytes with the phorbol ester phorbol 12-myristate 13-acetate (PMA) causes a dose-dependent stimulation of phospholipid methyltransferase (PLMT) activity. The stimulatory effect of PMA was not additive with that of isoprenaline or forskolin. The sensitivity of stimulated PLMT activity to inhibition by insulin, however, was decreased in the presence of PMA. The inhibitory effect of a maximal concentration of insulin on PLMT was unchanged in the presence of PMA. In contrast with the effects on PLMT, the lipolytic response of adipocytes to isoprenaline and the anti-lipolytic response to insulin were unaffected by PMA. These data suggest that PLMT is, whereas hormone-sensitive lipase is not, an intracellular target for the action of PMA. The lack of effect of PMA on lipolysis suggests that PLMT and hormone-sensitive lipase can be regulated by separate mechanisms. Furthermore, phorbol esters do not interfere in the regulatory pathway whereby insulin inhibits PMLT or lipolysis.  相似文献   

7.
When a partially purified rat liver phospholipid methyltransferase is incubated with [gamma-32P]ATP and rat brain protein kinase C, phospholipid methyltransferase (Mr 50,000, pI 4.75) becomes phosphorylated. Phosphorylation of the enzyme showed Ca2+/lipid-dependency. Protein kinase C-dependent phosphorylation of phospholipid methyltransferase was accompanied by an approx. 2-fold activation of the enzyme activity. Activity changes and enzyme phosphorylation showed the same time course. Activation of the enzyme also showed Ca2+/lipid-dependency. Protein kinase C mediates phosphorylation of predominantly serine residues of the methyltransferase. One major peak of phosphorylation was identified by analysis of tryptic phosphopeptides by isoelectrofocusing. This peak (pI 5.2) differs from that phosphorylated by the cyclic AMP-dependent protein kinase (pI 7.2), demonstrating the specificity of phosphorylation of protein kinase C. Tryptic-peptide mapping by h.p.l.c. of the methyltransferase phosphorylated by protein kinase C revealed one major peak of radioactivity, which could be resolved into two labelled phosphopeptides by t.l.c. The significance of protein kinase C-mediated phosphorylation of phospholipid methyltransferase is discussed.  相似文献   

8.
The effect of interacting isolated rat adipocytes with small, unilammelar vesicles on insulin receptor internalization and processing was studied. Treatment of freshly isolated cells with vesicles containing phosphatidylcholine and phosphatidylserine followed by incubation in 35 mM Tris-containing buffer considerably reduced the chloroquine-induced increase in cell-associated 125I-insulin and significantly inhibited the time and insulin dependent loss of surface insulin receptors. The internal receptor pool, as measured by insulin binding to detergent solubilized adipocytes, was relatively smaller in vesicle-treated cells. Concomitant with a slower rate of receptor internalization, insulin-sensitive hexose uptake also demonstrated significantly slower kinetics of decreased response with time. These results support the conclusion that pretreatment of fat cells with phospholipid vesicles inhibits normal insulin receptor cycling.  相似文献   

9.
A severe resistance to the stimulatory action of insulin on glucose metabolism has been shown in ruminant adipose tissue or isolated adipocytes as compared to that of rats. To elucidate the mechanism of insulin resistance in ruminants, we measured the stimulatory effect of insulin on 3-O-methylgulose transport and on intracellular glucose metabolism in isolated adipocytes from sheep and rats. At a glucose concentration (0.1 mM) where transport is thought to be rate-limiting for metabolism, lipogenesis from [U-14C]glucose by ovine adipocytes was markedly less than by rat adipocytes in both the basal state and at all insulin concentrations. The responsiveness to insulin assessed by percent increase above basal was reduced to about 15% of that in rat adipocytes, but the insulin sensitivity was similar, because the insulin concentration giving half-maximal stimulation, ED50, did not differ significantly between ovine and rat adipocytes. The maximal insulin-stimulated 3-O-methylglucose transport in ovine adipocytes per cell was less than 20% of that in rat adipocytes, with a significant lowering in basal rates of transport. However, when data was expressed per 3-O-methylglucose equilibrium space no significant differences were found between ovine and rat in the basal transport rates, but a lowered ability of insulin to stimulate glucose transport was still seen in ovine adipocytes. The dose-response curve for glucose transport was slightly shifted to the right in ovine adipocytes compared to rat adipocytes, indicating a small decrease in insulin sensitivity. The decrease in glucose transport was due to 60% reduction in the maximum velocity in the insulin--stimulated state, with no change in the Km.  相似文献   

10.
The influence of alterations in phospholipid structure by phospholipase treatment on insulin action and glucose transport in rat adipocytes was studied. It appeared that phospholipase A2 from bee venom caused a breakdown of approximately 50% of phosphotidylcholine without lysis of the cells. Because of this treatment, insulin binding was increased, resulting in an increased sensitivity of glucose transport towards lower insulin concentrations. Moreover, an increased affinity of the transport system for 2-deoxyglucose was observed. Phospholipase C from Clostridium welchii caused complete lysis of adipocytes. Phospholipase A2 from Crotalus adamenteus was without effect.  相似文献   

11.
A protein that potentiates the action of insulin in vitro was purified from human plasma. When reduced with 2-mercaptoethanol and then carboxymethylated, it yielded a single subunit, indicating that it was composed of two identical subunits connected by a single disulfide bond. This modified subunit tended to inhibit rather than stimulate insulin activity. A distinctive feature of the amino acid composition of this protein (H-ISP) was the absence of histidine, arginine, and tryptophan. The molecular mass, subunit composition, the characteristic amino acid composition and the N-terminal amino acid residue of H-ISP are very similar to those of human plasma apolipoprotein A-II (apo A-II). The isoelectric point of H-ISP was estimated to be 4.91, which is identical with that of the major apo A-II isoform. H-ISP did not itself have insulin-like activity in increasing CO2 liberation from labeled glucose and 2-deoxyglucose uptake by isolated rat adipocytes, but it potentiated the action of insulin in these parameters. It had no appreciable affect on the binding or degradation of 125I-labeled insulin by adipocytes. Like H-ISP, apo A-II isolated from human plasma also had no insulin-like activity by itself, but stimulated the effect of insulin on CO2 production from labeled glucose in isolated rat adipocytes. From these results, it is concluded that H-ISP is identical with the major apo A-II isoform. Incubation of isolated adipocytes with H-ISP resulted in marked increase in the activity of pyruvate dehydrogenase in a dose-dependent manner in the absence of added insulin. H-ISP also stimulated pyruvate dehydrogenase activity in a subcellular system consisting of plasma membranes and mitochondria from rat adipocytes. The effect of H-ISP on pyruvate dehydrogenase activity could be produced by treatment of the isolated mitochondrial fraction alone.  相似文献   

12.
Labeling with [3H]galactose was employed to isolate a glycosylphosphatidylinositol from rat hepatocytes which might be involved in the action of insulin. The polar head group of this glycosylphosphatidylinositol was generated by phosphodiesterase hydrolysis with a phosphatidylinositol-specific phospholipase C from Bacillus cereus. By Dowex AG1 x 8 chromatography the polar head group could be separated into three radioactive peaks eluting at 100 mM (peak I), 200 mM (peak II) and 500 mM (peak III) ammonium formate, respectively. Peak III was the most active as an inhibitor of the cAMP-dependent protein kinase. Treatment of peak III with alkaline phosphatase markedly reduced its activity on cAMP-dependent protein kinase. When peaks I, II or III were treated with alkaline phosphatase and analyzed again by Dowex AG1 x 8 chromatography, the radioactivity eluted with the aqueous fraction. The above results indicate that the polar head group of the insulin-sensitive glycosylphosphatidylinositol from rat hepatocytes exists in three different phosphorylated forms and that the biological activity of this molecule depends on its phosphorylation state.  相似文献   

13.
The tumor-promoting phorbol esters have insulinomimetic effects in several tissues. Employing two different assay systems, we have compared the effects of phorbol ester and insulin on the activity and intracellular distribution of the Ca++ and phospholipid dependent protein kinase (protein kinase C) in isolated rat adipocytes. Phorbol ester leads to a prompt depletion of kinase activity from the cytosolic fraction and appearance of activity in membrane extracts; neither of these effects is mimicked by insulin. These results, taken together with other data, emphasize important divergences between the actions of these agonists and suggest that changes in protein kinase C activity or intracellular distribution are not a necessary concomitant of the cascade of insulin action.  相似文献   

14.
Lipid-protein interactions with purified membranous intestinal alkaline phosphatase have been studied by using rat intestine. The enzyme was incorporated equally well into neutral lecithin and anionic liposomes, including those made from phosphatidic acid alone. It could not be solubilized with chaotropic salts nor by phospholipases C and D from either native membranes or phospholipid vesicles. Detergents effected nearly complete release of enzyme from the vesicles. Phosphatase activity was lost upon treatment with phospholipase D alone. The activity was restored with free choline, or choline containing phospholipids, but not by the addition of other phospholipids or amines. The catalytic activity was also lower when the enzyme was bound to a phosphatidylcholine vesicle containing additional phosphatidic acid. Neither phosphatidylserine nor phosphatidylinositol addition altered enzyme activity. These results show that the enzyme binds to the membrane by a primary hydrophobic interaction with membrane phospholipids without requiring the polar head group and that the enzyme activity is affected via a secondary interaction with choline. We suggest that choline protects the active site of brush border alkaline phosphatase from inhibition by endogenous membrane phosphate groups.  相似文献   

15.
Previous studies have shown that 'toxic malarial antigens' released by Plasmodium yoelii can induce hypoglycaemia in mice and act synergistically with insulin in stimulating lipogenesis in rat adipocytes in vitro. In this study, it was shown that similar bioactivity could be detected in Plasmodium falciparum culture supernatant, and the molecular basis of this activity was further investigated. Boiled spent culture medium from P. falciparum cultures ('BS-Pf') (exclusively released into the culture supernatant when schizonts rupture) acts in synergy with insulin to increase lipogenesis in a rat adipocyte assay by more than 250% (P < 0.001). Control preparations prepared from non-parasitized erythrocytes grown under similar conditions had no effect (P < 0.001). While contamination with mycoplasma has previously been shown to interfere with the interpretation of data obtained with other molecules thought to be released from P. falciparum in culture, including those inducing TNF-alpha and NO production by macrophages, such contamination was unequivocally ruled out here. BS-Pf alone did not stimulate the lipogenesis in short-term assays (less than 4 h), while long-term exposure of rat adipocytes to BS-Pf alone (12-24 h) caused a stimulation of lipogenesis at a level comparable to that observed with insulin. Furthermore, lipogenesis-inducing activity was also detected in the serum of squirrel monkeys infected with different species of malaria parasites (P. vivax, P. falciparum and P. brasilianum). Preliminary biochemical characterization showed that the biological activity was found in the solvent-extracted polar lipid fraction of boiled supernatant of P. falciparum cultures. All the different polar lipid fractions, collected from silica gel column chromatography, showed a comparable lipogenesis-inducing activity. Enzymatic treatment by phospholipase C of the lipid fraction, which co-migrated with the phosphatidylcholine standard, showed that the activity of the fraction was associated with the 1,2-diacylglycerol (1,2-DAG) moieties released from polar lipids. When this exogenous 1,2-DAG was added to the adipocyte cultures (short- and long-term cultures), it induced stimulation of lipogenesis in rat adipocytes, while no lipogenic activity was obtained from bacterial polar lipids and 1,2-DAG isolated from unparasitized erythrocytes. The importance of these findings is discussed with reference to other toxic malarial antigens and also to the potential role of these molecules in the induction of hypoglycaemia in the severe forms of malaria.  相似文献   

16.
Exposure to phospholipase C increased the incorporation of [32P]Pi into phosphatidate, CMP-phosphatidate and phosphatidylinositol in rat adipose tissue and isolated adipocytes. A similar effect was observed in response to insulin and oxytocin. Theophylline, 3-isobutyl-1-methylxanthine and adenosine deaminase decreased [32P]Pi incorporation, and adenosine and N6-phenylisopropyladenosine reversed these effects. As with insulin, exposure of adipose tissue to phospholipase C stimulated oxidation of glucose, pyruvate and leucine and activated pyruvate dehydrogenase. Oxytocin and adenosine also mimicked the effects of insulin on leucine oxidation and pyruvate dehydrogenase. However, only insulin stimulated glycogen synthase activity, indicating that the regulation of synthase may be achieved by intracellular events distinct from those regulating changes in phospholipid metabolism, sugar transport and mitochondrial enzyme activities. It is postulated that exposure to phospholipase C forms diacylglycerol, which is phosphorylated to yield phosphatidate. The increased labelling of CMP-phosphatidate and phosphatidylinositol results from the conversion of phosphatidate into these lipids. The correlation between the effects of phospholipase C on phosphatidate synthesis and changes in adipose-tissue metabolism suggests the possibility that increased phosphatidate may directly or indirectly produce changes in membrane transport and enzyme activities. The pattern of phospholipid labelling produced by insulin, adenosine and oxytocin suggests that these stimuli may also increase phosphatidate synthesis, and, if so, changes in phospholipid metabolism could account for some of the metabolic actions of these stimuli.  相似文献   

17.
Phosphoinositolglycan molecules isolated from insulin-sensitive mammalian tissues have been demonstrated in numerous in vitro studies to exert partial insulin-mimetic activity on glucose and lipid metabolism in insulin-sensitive cells. However, their ill-defined structures, heterogeneous nature, and limited availability have prohibited the analysis of the underlying molecular mechanism. Phosphoinositolglycan-peptide (PIG-P) of defined and homogeneous structure prepared in large scale from the core glycan of a glycosyl-phosphatidylinositol-anchored membrane protein from Saccharomyces cerevisiae has recently been shown to stimulate glucose transport as well as a number of glucose-metabolizing enzymes and pathways to up to 90% (at 2 to 10 microns) of the maximal insulin effect in isolated rat adipocytes, cardiomyocytes, and diaphragms (G. Müller et al., 1997, Endocrinology 138: 3459-3476). Consequently, we used this PIG-P for the present study in which we compare its intracellular signaling with that of insulin. The activation of glucose transport by both PIG-P and insulin in isolated rat adipocytes and diaphragms was found to require stimulation of phosphatidylinositol (PI) 3-kinase but to be independent of functional p70S6kinase and mitogen-activated protein kinase. The increase in glycerol-3-phosphate acyltransferase activity in rat adipocytes in response to PIG-P and insulin was dependent on both PI 3-kinase and p70S6kinase. This suggest that the signaling pathways for PIG-P and insulin to glucose transport and metabolism converage at the level of PI 3-kinase. A component of the PIG-P signaling pathway located up-stream of PI 3-kinase was identified by desensitization of isolated rat adipocytes for PIG-P action by combined treatment with trypsin and NaCl under conditions that preserved cell viability and the insulin-mimetic activity of sodium vanadate but completely blunted the insulin response. Incubation of the cells with either trypsin or NaCl alone was ineffective. The desensitized adipocytes were reconstituted for stimulation of lipogenesis by PIG-P by addition of the concentrated trypsin/salt extract. The reconstituted adipocytes exhibited 65-75% of the maximal PIG-P response and similar EC50 values for PIG-P (2 to 5 microns) compared with control cells. A proteinaceous N-ethylmaleimide (NEM)-sensitive component contained in the trypsin/salt extract was demonstrated to bind in a functional manner to the adipocyte plasma membrane of desensitized adipocytes via bipolar interactions. An excess of trypsin/salt extract inhibited PIG-P action in untreated adipocytes in a competitive fashion compatible with a receptor function for PIG-P of this protein. The presence of the putative PIG-P receptor protein in detergent-insoluble complexes prepared from isolated rat adipocytes suggests that caveolae/detergent-insoluble complexes of the plasma membrane may play a role in insulin-mimetic signaling by PIG-P. Furthermore, treatment of isolated rat diaphragms and adipocytes with PIG-P as well as with other agents exerting partially insulin-mimetic activity, such as PI-specific phospholipase C (PLC) and the sulfonylurea glimepiride, triggered tyrosine phosphorylation of the caveolar marker protein caveolin, which was apparently correlated with stimulation of lipogenesis. Strikingly, in adipocytes subjected to combined trypsin/salt treatment, PIG-P, PI-specific PLC, and glimepiride failed completely to provoke insulin-mimetic effects. A working model is presented for a signaling pathway in insulin-sensitive cells used by PIG(-P) molecules which involves GPI structures, the trypsin/salt- and NEM-sensitive receptor protein for PIG-P, and additional proteins located in caveolae/detergent-insoluble complexes.  相似文献   

18.
The effects of isoproterenol and insulin on phospholipid methyltransferase (PLMT) activity were investigated in adipocytes from control and streptozotocin-diabetic rats. PLMT activity was assayed by measuring the rate of incorporation of 3H-methyl groups from S-adenosyl-L-[methyl-3H] methionine into phospholipids. Basal PLMT activity was higher in adipocytes from diabetic animals. Treatment of adipocytes with isoproterenol induced a concentration-dependent stimulation of PLMT activity. In control adipocytes, the maximal effect was obtained at 100 nM isoproterenol with 2.3 fold increase in PLMT activity and a half maximal effect at 25 nM. In adipocytes from diabetic rats, a lower dose of isoproterenol (10 nM), caused 1.2 fold increase with a half maximal effect at 4 nM. Addition of 100 nM insulin inhibited basal PLMT activity and the stimulatory effect of isoproterenol in both types of adipocytes. The -adrenergic blocking agent propranolol inhibited the stimulatory effect of isoproterenol on PLMT activity in control and diabetic adipocytes. Intracellular concentration of cAMP was higher in diabetic adipocytes but decreased to normal values after incubation in the presence of insulin.  相似文献   

19.
Addition of vasopressin (1 microM) to isolated rat hepatocytes prelabeled with [32P]phosphate was accompanied by a 250% increase in the phosphorylation of phospholipid methyltransferase. Vasopressin-stimulated phospholipid methyltransferase phosphorylation was time- and dose-dependent. 32P-labeled phospholipid methyltransferase was recovered by immunoprecipitation and SDS-polyacrylamide gel electrophoresis. After electrophoresis, phospholipid methyltransferase was electroeluted from the polyacrylamide gel and subjected to tryptic digestion or HCl hydrolysis. Analysis of 32P-labeled peptides reveals only one site of phosphorylation and the analysis of [32P]phosphoamino acids indicates that phosphoserine is the only labeled amino acid.  相似文献   

20.
The polar head group that was released by treating an insulin-sensitive glycophospholipid with a phosphatidylinositol-specific phospholipase C (PI-PLC) stimulated pyruvate dehydrogenase (PDH) in both subcellular and whole cell assays. Stimulation of PDH activity in the subcellular assay was detected after gel filtration chromatography of the polar head group. This stimulation was not due to the presence of contaminating calcium and magnesium. The PDH-stimulating activity was proportional to the amount of polar head group added to the assay. The effect of the polar head group on PDH in the subcellular assay was blocked by sodium fluoride, suggesting that the polar head group activated the PDH phosphatase. In the whole cell assay, the polar head group stimulated PDH activity to an equal or greater extent as a physiological concentration of insulin. The effect of the polar head group was detected at 5 min, peaked at 10 min, and declined thereafter. In contrast, insulin stimulated PDH activity more slowly, but consistently. The PDH-stimulating activity eluted after bacitracin but ahead of ATP during gel filtration chromatography, and it was destroyed by exposure to NH4OH or alkaline phosphatase and by boiling in water. These data support the proposal that an early step in insulin action is the release of insulinomimetic polar head group from the insulin-sensitive glycophospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号