首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In homogenates of resting rapeseeds no lipase activity (glycerolester hydrolase, EC 3.1.1.3) could be detected using a titrimetric assay procedure. Following a 30-h lag-phase after imbibition, lipase activity increased sharply, reaching its maximum at day 4 after sowing. Simultaneously triglyceride content of the cotyledons decreased sharply. At any time during the 11-day period of seedling growth examined, only an alkaline lipase activity with a pH optimum around 9 was present. White light had essentially no effect on the development of lipase activity. However, the disappearance of lipase activity from the cotyledons after fat utilization was found to depend on nitrogen nutrition of the seedlings. The activities of the glyoxysomal enzymes catalase and malate synthetase showed the usual rise and fall patterns with peak activities at day 4 after sowing, independently of the mineral nutrition of the seedlings.About 90% of the lipase activity was associated with a microsomal membrane fraction. Resolution of this fraction by sucrose density gradient centrifugation (62,000 g for 14 h) yielded three distinct membrane fractions. Maximum activities of membrane marker enzymes were recovered from the gradients at following densities: The major portion of microsomal protein and lipase activity at 1.085 kg/l; microsomal malate synthetase and phosphorylcholineglyceride transferase at 1.116 kg/l; NADH-cytochrome c reductase and phosphorylcholinecytidyl transferase at 1.133 kg/l. Evidently in rapeseed cotyledons lipase activity is associated only with a discrete microsomal membrane fraction which sediments differently from membrane fractions of the endoplasmic reticulum.  相似文献   

2.
Tetrahymena pyriformis contains platelet-activating factor (PAF) as a minor lipid, which is biosynthesized de novo. A dithiothreitol-insensitive CDP-choline:cholinephosphotransferase (AAG-CPT), which utilizes alkyl-acetyl-glycerol as a substrate, had been detected in both the mitochondrial and microsomal fractions of the protozoan. In the present report, localization of this enzyme in submitochondrial fractions was studied. Cell fractionation was evaluated with enzyme and morphological markers. In this respect, succinate dehydrogenase, NADPH:cytochrome c reductase, glucose-6-phosphatase, alkaline phosphatase, monoaminoxidase, and cytochrome c oxidase activities were investigated. In the presence of antimycin A, mitochondrial activity of NADPH-cytochrome c reductase, was increased, while the microsomal one was reduced. Cardiolipin was distributed in the inner mitochondrial membrane. Alkaline phosphatase was found exclusively in the cytosol of the protozoan. The main portion of the dithiothreitol-insensitive AAG-CPT was localized in the inner mitochondrial membrane. Our data indicate that mitochondria are able to produce PAF, which might be associated with their function.  相似文献   

3.
The characteristics of neutral cholesteryl ester hydrolase activities found in the microsomal and cytosolic subcellular fractions of rat lactating mammary tissue were investigated. The enzymes were assayed using cholesteryl oleate dispersed as a mixed micelle with phosphatidylcholine and sodium taurocholate (molar ratio 1:4:2) as substrate. This method gave activities approx. 20-fold higher than those seen when cholesteryl oleate was added in ethanol. Addition of phosphatidylcholine and sodium taurocholate to the assays using the ethanol-dissolved substrate did not increase the activities observed. When the cholesteryl oleate was dispersed with phosphatidylcholine only (molar ratio, 1:4) the activity of the two neutral cholesteryl ester hydrolases was also decreased considerably compared to that found with mixed micelles. In this case, however, approx. 60% of the cytosolic, but only 10% of the microsomal activity, was restored by separate addition of sodium taurocholate. The activities of both the microsomal and the cytosolic neutral cholesteryl ester hydrolases were inhibited by MgCl2, and this inhibition was almost completely reversed by the addition of an equimolar concentration of ATP. At a fixed concentration of MgCl2 increasing concentrations of ATP increased the enzyme activities in a dose-dependent way. The activity of the microsomal, but not the cytosolic enzyme was enhanced by a cyclic AMP-dependent protein kinase and both activities were inhibited by alkaline phosphatase (bovine milk). These results provide evidence for the regulation of neutral cholesteryl ester hydrolases in the rat lactating mammary gland by mechanisms involving phosphorylation-dephosphorylation and therefore suggest that these enzymes may be under hormonal control.  相似文献   

4.
Lipase (triacylglycerol lipase, EC 3.1.1.3) activities have been reported previously in the lipid body and microsomal membranes of oilseed-rape (Brassica napus cv. Andor) seedlings, but conflicting data made it unclear whether there was one lipase in the lipid bodies, with the microsomal activity being attributable to fragments of lipid-body membrane, or if there were two separate lipase activities. In the present study, simultaneous characterization of the lipases under identical conditions showed they differed substantially in their pH-activity curves, kinetics and substrate specificities. (1) The kinetics of the microsomal lipase showed that the rate of lipolysis reached a plateau at concentrations above 5 mM, whereas the lipid-body lipase showed a linear increase in activity with substrate concentration up to 20 mM. (2) The pH optimum of the microsomal lipase was 7.5, whereas that of the lipid-body lipase was 9.0. The microsomal lipase was greatly inhibited at higher pH values, whereas the lipid-body lipase was much less affected. (3) Activity of the microsomal lipase was greatly diminished when substrates with longer chain length were used, and enhanced 4-fold if the substrates contained a single double bond. The lipid-body lipase was relatively unaffected by the type of fatty acid in the triacylglycerol. (4) SDS/polyacrylamide-gel electrophoresis showed little or no cross-contamination of the lipid-body and microsomal fractions. (5) The microsomal lipase activity comprised 75-80% of the total extracted.  相似文献   

5.
The separation of rat epididymal adipocytes into plasma-membrane, mitochondrial, microsomal and cytosol fractions is described. The fractions, which were characterized by marker-enzyme analysis and electron-micrographic observation, from the cells of fed and 24 h-starved animals were used to prepare acetone/diethyl ether-dried powders for the measurement of lipoprotein lipase activities. The highest specific activities and proportion of recovered lipoprotein lipase activity were found in the plasma-membrane and microsomal fractions. The two fractions from the cells of fed rats showed similar activities and enrichments of the enzyme, these activities being higher than the plasma-membrane and lower than the microsomal activities recovered from the cells of starved animals. Chicken and guinea-pig anti-(rat lipoprotein lipase) sera were prepared, and an indirect labelled-second-antibody cellular immunoassay, using 125I-labelled rabbit anti-(chicken IgG) or 125I-labelled sheep anti-(guinea-pig IgG) antibodies respectively, for the detection of cell-surface enzyme was devised and optimized. The amount of immunodetectable cell-surface lipoprotein lipase was higher for cells isolated from fed animals than for cells from 24 h-starved animals, when either anti-(lipoprotein lipase) serum was used in the assay. The amount of immunodetectable cell-surface lipoprotein lipase fell further when starvation was extended to 48 h. The lipoprotein lipase of plasma-membrane vesicles was shown to be a patent activity and to be immunodetectable in a modification of the cellular immunoassay. Although the functional significance of the adipocyte surface lipoprotein lipase is not known, the possibility of it forming a pool of enzyme en route to the capillary endothelium is advanced.  相似文献   

6.
The lipolytic activities of heart tissue towards full and partial acylglycerols were characterized. Tissue lysosomal, acid lipase activity (pH 4.8) was inhibited by high salt, protamine sulfate, NaF, MgATP, Triton X-100, serum and the esterase-inhibitor diethylparanitrophenyl phosphate. The tissue neutral triacylglycerol lipase activity (pH 7.4) was recovered predominantly in the microsomal and soluble fractions and exhibited essentially identical properties towards activators (serum, apolipoprotein C-II) and reagents (NaCl, Triton X-100, NaF, MgATP and diethylparanitrophenyl phosphate) relative to vascular lipoprotein lipase, except for protamine sulfate which increased the serum-stimulated neutral triacylglycerol lipase activity. Triacylglycerol hydrolysis at acid pH was incomplete, whereas at neutral pH full hydrolysis occurred. Myocardial mono- and diacylglycerol lipase activities, with pH optima of 8.0 and 7.4, respectively, were recovered in the microsomal fraction. They differed immunologically from neutral lipase and lipoprotein lipase and did not bind to heparin-Sepharose 4B. They were kinetically different, partially inhibited by NaCl and differentially affected by protamine sulfate. NaF, Triton X-100 and diethylparanitrophenyl phosphate. Our data suggest that endogenous hydrolytic activity against full and partial acylglycerols is mediated by separate enzymes.  相似文献   

7.
The acyltransferases that catalyze the synthesis of phosphatidic acid from labelled sn-[14C]glycero-3-phosphate and fatty acyl carnitine or coenzyme A derivatives have been shown to be present in both isolated mitochondria and microsomes from rat liver. The major reaction product was phosphatidic acid in both subcellular fractions. A small quantity of lysophosphatidic acid and neutral lipids were produced as by-products. Divalent cations had significant effects on both mitochondrial and microsomal fractions in stimulating acylation using palmitoyl CoA, but not when palmitoyl carnitine was used as the acyl donor. Palmitoyl CoA and palmitoyl carnitine could be used for acylation by both mitochondria and microsomes. Mitochondria were more permeable to palmitoyl carnitine and readily used it as the substrate for acylation. On the other hand, microsomes yielded a better rate with palmitoyl CoA and the rate of acylation from palmitoyl carnitine in microsomes was correlated with the degree of mitochondrial contamination. The enzymes were partially purified from Triton X-100 extracts of subcellular fractions. Based on the differences of substrate utilization, products formed, divalent cation effects, molecular weights, and polarity, the mitochondrial and microsomal acyltransferases appeared to be different enzymes.  相似文献   

8.
Characterization of the lipolytic activity of endothelial lipase   总被引:16,自引:0,他引:16  
Endothelial lipase (EL) is a new member of the triglyceride lipase gene family previously reported to have phospholipase activity. Using radiolabeled lipid substrates, we characterized the lipolytic activity of this enzyme in comparison to lipoprotein lipase (LPL) and hepatic lipase (HL) using conditioned medium from cells infected with recombinant adenoviruses encoding each of the enzymes. In the absence of serum, EL had clearly detectable triglyceride lipase activity. Both the triglyceride lipase and phospholipase activities of EL were inhibited in a dose-dependent fashion by the addition of serum. The ratio of triglyceride lipase to phospholipase activity of EL was 0.65, compared with ratios of 24.1 for HL and 139.9 for LPL, placing EL at the opposite end of the lipolytic spectrum from LPL. Neither lipase activity of EL was influenced by the addition of apolipoprotein C-II (apoC-II), indicating that EL, like HL, does not require apoC-II for activation. Like LPL but not HL, both lipase activities of EL were inhibited by 1 M NaCl. The relative ability of EL, versus HL and LPL, to hydrolyze lipids in isolated lipoprotein fractions was also examined using generation of FFAs as an end point. As expected, based on the relative triglyceride lipase activities of the three enzymes, the triglyceride-rich lipoproteins, chylomicrons, VLDL, and IDL, were efficiently hydrolyzed by LPL and HL. EL hydrolyzed HDL more efficiently than the other lipoprotein fractions, and LDL was a poor substrate for all of the enzymes.  相似文献   

9.
1. Acyl-CoA hydrolase activities, using palmitoyl-CoA and decanoyl-CoA as substrates, were highest in the proximal part and lowest in the distal part of the guinea-pig small intestine. Butyryl-CoA hydrolase activity was not found in any of the homogenates. 2. The acyl-CoA hydrolases showed a complex subcellular distribution when compared to classical marker enzymes. The specific activity of the hydrolase was highest in the microsomal fraction, and lowest in the soluble fraction when palmitoyl-CoA was used as substrate. When decanoyl-CoA was used as substrate, highest activity was found in the mitochondrial/lysosomal fraction and lowest in the microsomal fraction. 3. Gel filtration on an ultrogel AcA-44 column separated the palmitoyl-CoA hydrolase of the cytosol fraction into three or four fractions. 4. Palmitoyl-carnitine hydrolase was present in the microsomal and the nuclei fractions. The distribution was mostly similar to the alkaline phosphatase suggesting a brush border localization.  相似文献   

10.
1. GPAT (glycerol phosphate acyltransferase) and DHAPAT (dihydroxyacetone phosphate acyltransferase) activities were measured both in subcellular fractions prepared from fed rat liver and in whole homogenates prepared from freeze-stopped pieces of liver. 2. GPAT activity in mitochondria differed from the microsomal activity in that it was insensitive to N-ethylmaleimide, had a higher affinity towards the palmitoyl-CoA substrate and showed a different response to changes in hormonal and dietary status. 3. Starvation (48 h) significantly decreased mitochondrial GPAT activity. The ratio of mitochondrial to microsomal activities was also significantly decreased. The microsomal activity was unaffected by starvation, except after adrenalectomy, when it was significantly decreased. Mitochondrial GPAT activity was decreased by adrenalectomy in both fed and starved animals. 4. Acute administration of anti-insulin serum significantly decreased mitochondrial GPAT activity after 60 min without affecting the microsomal activity. 5. A new assay is described for DHAPAT. The subcellular distribution of this enzyme differed from that of GPAT. The highest specific activity of DHAPAT was found in a 23 000 gav. pellet obtained by centrifugation of a post-mitochondrial supernatant. This fraction also contained the highest specific activity of the peroxisomal marker uricase. DHAPAT activity in mitochondrial fractions or in the 23 000 gav. pellet was stimulated by N-ethylmaleimide, whereas that in microsomal fractions was slightly inhibited by this reagent. The GPAT and DHAPAT activities in mitochondrial fractions had a considerably higher affinity for the palmitoyl-CoA substrate. 6. Total liver DHAPAT activity was significantly decreased by starvation (48 h), but was unaffected by administration of anti-insulin serum. 7. The specific activities of GPAT and DHAPAT were lower in non-parenchymal cells compared with parenchymal cells, but the GPAT/DHAPAT ratio was 5--6-fold higher in the parenchymal cells.  相似文献   

11.
Lipolysis of intracellular triglycerides in the heart has been shown to be regulated by hormones. However, activation of myocardial triglyceride lipase in a cell-free system has not been directly demonstrated. In the present studies, initial attempts to demonstrate cAMP-dependent activation of triglyceride lipase using the 1,000 X g supernatant fraction (S1) of mouse heart homogenate were unsuccessful, presumably due to the masking effects of high levels of lipoprotein lipase activity even when assayed at pH 7.4 and in the absence of apolipoprotein C-II. Myocardial lipoprotein lipase in the 40,000 X g supernatant fraction was then removed by heparin-Sepharose affinity chromatography. The lipoprotein lipase-free fractions were shown to contain neutral triglyceride lipase and neutral cholesterol esterase of about equal activities. The triglyceride lipase and cholesterol esterase activities fell progressively during preincubation in the presence of 5 mM Mg2+. Additions of cAMP and ATP resulted in 40-70% activation of both triglyceride lipase and cholesterol esterase. The activation was blocked by protein kinase inhibitor and was restored by the addition of exogenous cAMP-dependent protein kinase. Since lipoprotein lipase has no activity toward cholesteryl oleate, activation of cholesterol esterase in untreated S1 was readily demonstrable. Both triglyceride lipase and cholesterol esterase activities were present in homogenates prepared from isolated rat heart myocytes. We conclude that the myocardium contains a hormone-sensitive lipase that is regulated in a fashion similar to that of the adipose tissue enzyme.  相似文献   

12.
A neutral triacylglycerol lipase activity that is separate and distinct from lipoprotein lipase (LPL) could be measured in homogenates of myocardial cells if protamine sulphate and high concentrations of albumin were included in the assay. This neutral lipase was predominantly particulate, with the highest relative specific activity in microsomal subcellular fractions. The induction of diabetes by the administration of streptozotocin to rats resulted in a decrease in LPL activity in myocyte homogenates and in particulate subcellular fractions, but the percentage of cellular LPL activity that was released during incubation of myocytes with heparin was normal. In contrast, neutral lipase activity was increased in diabetic myocyte homogenates and microsomal fractions. Acid triacylglycerol lipase activity was not changed in diabetic myocytes. The decrease in LPL in myocytes owing to diabetes may result in the decreased functional LPL activity at the capillary endothelium of the diabetic heart.  相似文献   

13.
A fluorimetric assay for lipase activity has been optimized for measurement of the enzyme in human neutrophils. Activity was maximal at acid (4.5) and alkaline (9.5) pH, although there was also a neutral peak of activity at pH 6.5. Neutrophils were homogenised in isotonic sucrose and subjected to analytical subcellular fractionation by sucrose density gradient centrifugation. The gradient fractions were assayed for acid, neutral and alkaline lipase activity and for the principal organelle marker enzymes. Neutral lipase showed a unimodal distribution with an equilibrium density of 1.19 g . cm-3, corresponding to the distribution of particulate leucine aminopeptidase. Acid and alkaline lipase activities showed very similar distribution profiles to each other with both soluble components and a broad peak of particulate activity. The broad modal density of 1.19-1.22 g . cm-3 suggests that acid and alkaline lipase activities could be localised to more than one population of cytoplasmic granule. Fractionation experiments with neutrophils homogenised in sucrose medium containing digitonin confirmed the localisation of neutral lipase and leucine aminopeptidase to the same cytoplasmic granule, and suggested that at least part of the acid lipase activity was localised to the specific granule. No lipase activity could be attributed to the alkaline phosphatase-containing granule. Neutrophils were isolated from control subjects, patients with chronic granulocytic leukaemia and women in the third trimester of pregnancy. The specific activity of acid, neutral and alkaline lipase, and leucine aminopeptidase, in contrast to that of alkaline phosphatase, were similar in the three patient groups.  相似文献   

14.
The properties and subcellular distribution of phosphatidate phosphatase (EC 3.1.3.4) from adipose tissue have been investigated. The enzyme was assayed using both aqueous phosphatidate and membrane-bound phosphatidate as substrates. When measured with aqueous substrate, activity was detected in the mitochondria, the microsomes, and the soluble fraction. Mg(2+) at low concentration stimulated the phosphatidate phosphatase from soluble and microsomal fractions but had no effect on the mitochondrial phosphatidate phosphatase. At higher concentration Mg(2+) was inhibitory. In the presence of Mg(2+), the phosphatidate phosphatase from soluble and microsomal fractions was active against membrane-bound phosphatidate. No activity was demonstrated with membrane-bound substrate in the absence of Mg(2+). Mitochondria did not contain activity toward the membrane-bound substrate. The rate of utilization of aqueous phosphatidate was always higher than that of membrane-bound substrate. These results indicate that there are at least two different phosphatidate phosphatases in adipose tissue.  相似文献   

15.
Diacylglycerol lipase (glycerol ester hydrolase, EC 3.1.1.3) activities were investigated in subcellular fractions from neonatal and adult rat liver in order to determine whether one or more different lipases might provide the substrate for the developmentally expressed, activity monoacylglycerol acyltransferase. The assay for diacylglycerol lipase examined the hydrolysis of sn-1-stearoyl,2- [14C]oleoylglycerol to labeled monoacylglycerol and fatty acid. Highest specific activities were found in lysosomes (pH 4.8) and cytosol and microsomes (pH 8). The specific activity from plasma membrane from adult liver was 5.8-fold higher than the corresponding activity in the neonate. In other fractions, however, no developmental differences were observed in activity or distribution. In both lysosomes and cytosol, 75 to 90% of the labeled product was monoacylglycerol, suggesting that these fractions contained relatively little monoacylglycerol lipase activity. In contrast, 80% of the labeled product from microsomes was fatty acid, suggesting the presence of monoacylglycerol lipase in this fraction. Analysis of the reaction products strongly suggested that the lysosomal and cytosolic diacylglycerol lipase activities hydrolyzed the acyl-group at the sn-1 position. The effects of serum and NaCl on diacylglycerol lipase from each of the subcellular fractions differed from those effects routinely observed on lipoprotein lipase and hepatic lipase, suggesting that the hepatic diacylglycerol lipase activities were not second functions of these triacylglycerol lipases. Cytosolic diacylglycerol lipase activity from neonatal liver and adult liver was characterized. The apparent Km for 1-stearoyl,2-oleoylglycerol was 115 microM. There was no preference for a diacylglycerol with arachidonate in the sn-2 position. Bovine serum albumin stimulated the activity, whereas dithiothreitol, N-ethylmaleimide, and ATP inhibited the activity. Both sn-1(3)- and 2-monooleylglycerol ethers stimulated cytosolic diacylglycerol lipase activity 2-3-fold. The corresponding amide analogs stimulated 28 to 85%, monooleoylglycerol itself had little effect, and 1-alkyl- or 1-acyl-lysophosphatidylcholine inhibited the activity. These data provide the first characterization of hepatic subcellular lipase activities from neonatal and adult rat liver and suggest that independent diacylglycerol and monoacylglycerol lipase activities are present in microsomal membranes and that the microsomal and cytosolic diacylglycerol lipase activities may describe an ambipathic enzyme. The data also suggest possible cellular regulation by monoalkylglycerols.  相似文献   

16.
The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l-1, with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l-1 NaCl and on the presence of at least 0.1 mol l-1 NaCl in the test mixture. Desoxycholate and up to 0.1 mol l-1 CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.  相似文献   

17.
Male rats were fasted for 3 days, subjected to streptozotocin-diabetes or injected with L-thyroxine, Kenacort-A40 (corticosteroid) and Synacthen (ACTH). Cardiac heparin-releasable lipoprotein lipase (LPL) activity was increased after fasting, experimental diabetes and all hormone treatments. Cardiac neutral lipase activity was decreased during diabetes and enhanced in the fasted state and by L-thyroxine, corticosteroid and ACTH administration. The close correlation between vascular LPL and tissue neutral lipase with cardiac triglyceride content is in agreement with the contention that tissue neutral lipase is similar to LPL (Hülsmann, Stam and Breeman 1982). Myocardial acid lipase activity was reduced during diabetes and L-thyroxine treatment, increased during fasting and corticosteroid administration and not affected by short-term ACTH treatment. Hepatic acid lipase activity was increased during fasting, diabetes and by L-thyroxine and reduced after corticosteroid and ACTH treatment. The alkaline liver lipase activity was depressed by fasting, experimental diabetes, corticosteroid and ACTH treatment, whereas L-thyroxine induced a slight increase in enzyme activity. The possible mechanism underlying the observed changes in acid, neutral, alkaline, and LPL activities in heart and liver are discussed.  相似文献   

18.
The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ~20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant.  相似文献   

19.
In order to test the possibilities in protein degradation between cell organelles comparatively, [3H]- and [14C]-leucine short-time labelled subcellular fractions from rat liver were incubated with each other at pH 6.9. All fractions tested were able to degrade short-lived proteins from foreign fractions, whereby the lysosomal supernatant fraction showed the highest proteolytic activity, which declines in the sequence: lysosomes--nuclei--mitochondria--cytosol--microsomes. Short-lived cytosolic proteins were especially suited as substrate for neutral proteases from all other fractions, but also microsomal, mitochondrial and nuclear proteins were well degraded by foreign fractions in comparison with the substrate autoproteolysis. Therefore in vivo manyfold cooperations between several organelles in protein catabolism seem to be possible.  相似文献   

20.
The site for the synthesis of triacylglycerol in heart muscle has been the subject of this study. Acyl-CoA synthetase and glycerophosphate acyltransferase, enzymest necessary for the synthesis of triacylglycerol, have been found to be associated to membrane-bounded lipid particles. The acylglycerol synthesizing enzymes exhibit higher activities in the membrane-bounded lipid particles than in the mitochondrial or microsomal fractions. Futhermore, the lipid particles have the greater capacity for synthesis of diacylglycerols and triacylglycerols, whereas monoacylgly cerols are the major neutral lipid product in both the mitochondrial and the microsomal fractions. The results indicate that the membrane-bounded lipid particle may be the site for the synthesis as well as for the storage of intracellular triacylglycerol of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号