首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A review of the modern state of knowledge of zoosporic fungi in freshwater plankton and benthos is given. The effects of abiotic factors upon the distribution and development of these fungi are discussed, along with the problem of the role zoosporic fungi play in lake ecosystems.  相似文献   

3.
4.
Role of fungi in freshwater ecosystems   总被引:7,自引:0,他引:7  
There are more than 600 species of freshwater fungi with a greater number known from temperate, as compared to tropical, regions. Three main groups can be considered which include Ingoldian fungi, aquatic ascomycetes and non-Ingoldian hyphomycetes, chytrids and, oomycetes. The fungi occurring in lentic habitats mostly differ from those occurring in lotic habitats. Although there is no comprehensive work dealing with the biogeography of all groups of freshwater fungi, their distribution probably follows that of Ingoldian fungi, which are either cosmopolitan, restricted to pantemperate or pantropical regions, or in a few cases, have a restricted distribution. Freshwater fungi are thought to have evolved from terrestrial ancestors. Many species are clearly adapted to life in freshwater as their propagules have specialised aquatic dispersal abilities. Freshwater fungi are involved in the decay of wood and leafy material and also cause diseases of plants and animals. These areas are briefly reviewed. Gaps in our knowledge of freshwater fungi are discussed and areas in need of research are suggested.  相似文献   

5.
Persistence of environmental DNA in freshwater ecosystems   总被引:1,自引:0,他引:1  
The precise knowledge of species distribution is a key step in conservation biology. However, species detection can be extremely difficult in many environments, specific life stages and in populations at very low density. The aim of this study was to improve the knowledge on DNA persistence in water in order to confirm the presence of the focus species in freshwater ecosystems. Aquatic vertebrates (fish: Siberian sturgeon and amphibian: Bullfrog tadpoles) were used as target species. In control conditions (tanks) and in the field (ponds), the DNA detectability decreases with time after the removal of the species source of DNA. DNA was detectable for less than one month in both conditions. The density of individuals also influences the dynamics of DNA detectability in water samples. The dynamics of detectability reflects the persistence of DNA fragments in freshwater ecosystems. The short time persistence of detectable amounts of DNA opens perspectives in conservation biology, by allowing access to the presence or absence of species e.g. rare, secretive, potentially invasive, or at low density. This knowledge of DNA persistence will greatly influence planning of biodiversity inventories and biosecurity surveys.  相似文献   

6.
7.
Microbial diversity and function in Antarctic freshwater ecosystems   总被引:10,自引:0,他引:10  
Freshwater lakes occur through much of Antarctica and are characterized by short food chains dominated by microbes. Comparatively few studies have been made of continental freshwater lakes until recently, with the main emphasis being on the less extreme maritime Antarctic lakes. The wide range of trophic status seen at the northern extremes of the maritime Antarctic reduces markedly further south, but a wide range of micro-organisms occur throughout the latitudinal range. Information on seasonal and spatial patterns of microbial activity for freshwater lakes demonstrate rapid changes in community composition at certain times of year despite constant low temperatures. Benthic communities of cyanobacteria and bacteria are a feature of most lakes and are involved in a wide range of geochemical cycling. There is a need for more detailed taxonomic information on most groups and considerable potential for molecular studies.  相似文献   

8.
The emergent wetland and littoral components of the land-water zone are functionally coupled by the amounts and types of dissolved organic matter that are released, processed, transported to, and then further processed within the recipient waters. Operational couplings and integrations in freshwater ecosystems occur along physical and metabolic gradients of a number of scales from micrometer to kilometer dimensions. The operation and turnover of the microbial communities, largely associated with surfaces, generate the metabolic foundations for material fluxes along larger-scale gradients. Because of the predominance of small, shallow freshwater bodies, most dissolved organic carbon (DOC) of lacustrine and riverine ecosystems is derived from photosynthesis of higher plants and microflora associated with detritus, including sediments, and is only augmented by photosynthesis of phytoplankton. As the dissolved organic compounds generated in the wetland and littoral interface regions move toward the open-water regions of the ecosystems, partial utilization effects a selective increase in organic recalcitrance. Even though DOC from allochthonous and from interface sources is more recalcitrant than that produced by planktonic microflora, decomposition of the much larger interface quantities imported to the pelagic zone dominates ecosystem decomposition. The observed high sustained productivity of the land-water interface zone results from extensive recycling of essential resources (nutrients, inorganic carbon) and conservation mechanisms. On the average in lakes and streams, greater than 90 percent of the decomposition in the ecosystem is by bacteria utilizing DOM from non-pelagic sources of primary productivity. In addition to direct mineralization of DOC from non-pelagic sources, many of the organic compounds function indirectly to influence metabolism. New evidence is presented to demonstrate formation of complexes between humic and fulvic organic acids and extracellular enzymes. These complexes inhibit enzyme activity and can be transported within the ecosystem. The complex can be decoupled by mild ultraviolet photolysis with regeneration of enzyme activity in displaced locations.  相似文献   

9.
We generated a detailed time series of total dissolved hydrolyzable amino acids (DHAA) in a watershed dominated by irrigated agriculture in northern California, USA to investigate the roles of hydrologic and seasonal changes on the composition of dissolved organic matter (DOM). DHAA are sensitive indicators of the degradation state and reactivity of DOM. DHAA concentrations ranged from 0.55 to 9.96 μM (median 3.51 ± 1.80 μM), with expected peaks during high-discharge storms and unexpected high values throughout the low-discharge irrigation season. Overall, summer irrigation was a critical hydrologic regime for DOM cycling since it mobilized DOM similar in concentration and reactivity to DOM released during storms. Together, irrigation and storm flows exported DOM with (1) the largest DHAA contributions to the dissolved organic carbon and the dissolved organic nitrogen pools, (2) the largest proportion of basic amino acids, and (3) the lowest degradation extent based on multiple indices. In this highly disturbed terrestrial system, UV–vis absorbance did not correlate with DHAA concentrations, while classic interpretations of common amino acid indicators (e.g., proportion of basic amino acids, degradation index, percent of non-protein amino acids) were prone to conflicting characterizations of DOM reactivity. Therefore, a new parameter (processing ratio, PR) derived from individual amino acid concentrations was developed that demonstrated a strong potential for mechanistic-driven characterization of the extent of DOM diagenesis in freshwaters. Irrigated agriculture altered stream biogeochemistry by releasing a continuous supply of reactive DOM (lowest PR values), thereby providing an additional energy source to downstream ecosystems.  相似文献   

10.
陆地和淡水生态系统新型微生物氮循环研究进展   总被引:1,自引:0,他引:1  
祝贵兵 《微生物学报》2020,60(9):1972-1984
氮生物地球化学循环是地球物质循环的重要枢纽,是决定陆地生态系统生产力水平、水资源安全、温室气体生成排放的关键过程。氮循环是由微生物介导的一系列复杂过程,不同形态、价态氮化合物的转化分别由相应的功能微生物驱动完成。随着厌氧氨氧化、完全氨氧化等新型氮转化过程的相继报道和发现更新了人们对氮循环的认识。本文综述了陆地和淡水生态系统中厌氧氨氧化(anammox)、硝酸盐异化还原为铵(DNRA)、完全氨氧化(comammox)等新型氮循环过程的发生机制、热区分布及环境效应,并总结了这三种氮循环的相互关系。  相似文献   

11.
The functional role of burrowing bivalves in freshwater ecosystems   总被引:13,自引:0,他引:13  
1. Freshwater systems are losing biodiversity at a rapid rate, yet we know little about the functional role of most of this biodiversity. The ecosystem roles of freshwater burrowing bivalves have been particularly understudied. Here we summarize what is known about the functional role of burrowing bivalves in the orders Unionoida and Veneroida in lakes and streams globally. 2. Bivalves filter phytoplankton, bacteria and particulate organic matter from the water column. Corbicula and sphaeriids also remove organic matter from the sediment by deposit feeding, as may some unionids. Filtration rate varies with bivalve species and size, temperature, particle size and concentration, and flow regime. 3. Bivalves affect nutrient dynamics in freshwater systems, through excretion as well as biodeposition of faeces and pseudofaeces. Excretion rates are both size and species dependent, are influenced by reproductive stage, and vary greatly with temperature and food availability. 4. Bioturbation of sediments through bivalve movements increases sediment water and oxygen content and releases nutrients from the sediment to the water column. The physical presence of bivalve shells creates habitat for epiphytic and epizoic organisms, and stabilizes sediment and provides refugia for benthic fauna. Biodeposition of faeces and pseudofaeces can alter the composition of benthic communities. 5. There is conflicting evidence concerning the role of resource limitation in structuring bivalve communities. Control by bivalves of primary production is most likely when their biomass is large relative to the water volume and where hydrologic residence time is long. Future studies should consider exactly what bivalves feed upon, whether feeding varies seasonally and with habitat, and whether significant overlap in diet occurs. In particular, we need a clearer picture of the importance of suspension versus deposit feeding and the potential advantages and tradeoffs between these two feeding modes. 6. In North America, native burrowing bivalves (Unionidae) are declining at a catastrophic rate. This significant loss of benthic biomass, coupled with the invasion of an exotic burrowing bivalve (Corbicula), may result in large alterations of ecosystem processes and functions.  相似文献   

12.
Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land‐cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free‐flowing tributaries in the next few decades if all 277 planned dams are completed. Land‐cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.  相似文献   

13.
The role of ciliated protozoa in pelagic freshwater ecosystems   总被引:11,自引:0,他引:11  
The abundance and biomass of ciliates are both strongly related to lake trophic status as measured by chlorophylla concentrations. Taxonomic replacements occur with increasing eutrophication such that large-bodied forms (predominantly oligotrichs) are progressively replaced by smaller-bodied ciliates (mainly scuticociliates). Highly acidic lakes display a more pronounced dominance of large-bodied forms when contrasted with less acidic lakes of comparable trophy. Community structure of ciliate populations is determined largely by lake trophy with acidic oligotrophic systems being characterized by reduced diversity and species richness compared with hypereutrophic systems. The temporal and spatial distribution of small (< 100m) ciliate populations is ascribed to lake thermal regimes which provide localized concentrations of food resources. Likewise, in extremely productive lakes, very large (> 100m) meroplanktonic ciliates enter the water column during midsummer after the development of thermal stratification and associated profundal deoxygenation. Laboratory studies indicate that large zooplankton (crustaceans) are capable of utilizing ciliates as a food source, but there is little direct evidence from field studies documenting this trophic link. Ciliates can be voracious grazers of both bacterioplankton and phytoplankton, and each species has a distinct range of preferred particle size which is a function of both mouth size and morphology. Myxotrophic ciliates may be important components in some plankton communities, particularly during periods of nutrient limitation or after their displacement from the benthos of eutrophic lakes. Evidence regarding the importance of planktonic ciliated protozoa in nutrient regeneration and as intermediaries in energy flow is discussed.  相似文献   

14.
15.
The role of animals in modulating nutrient cycling [hereafter, consumer‐driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973–2002 to 7.3 per year during 2003–2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal‐mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non‐CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco‐evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem‐level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems.  相似文献   

16.
Microbial attachment to particles in marine and freshwater ecosystems   总被引:2,自引:0,他引:2  
Scanning electron microscopy observations ofin situ suspended marine and freshwater particles show diverse but similar modes of bacterial and fungal attachment. A survey of Sierra Nevada mountain lakes and pelagic and near-shore waters in the Pacific Ocean indicates that attachment is most noticeable in the near-surface waters where fresh dissolved and particulate input of carbon from phytoplankton and elevated temperatures favor microbial growth. The most common modes of attachment are: adhesive stalk formation, growth on adhesive webs, attachment by the use of pili-like appendages and slimy capsular secretions, and molecular or chemical sorption without the use of visualized structural appendages. Attached microbial growth is accelerated when particulate substrates are supplied, even when they are not rich in organic nutrients. This is the case in the Lake Tahoe basin, where microflora attached to eroded silts can significantly modify the organic carbon and nutrient content of such minerogenous particles.  相似文献   

17.
18.
19.
Human activities have severely affected the condition of freshwater ecosystems worldwide. Physical alteration, habitat loss, water withdrawal, pollution, overexploitation and the introduction of non-native species all contribute to the decline in freshwater species. Today, freshwater species are, in general, at higher risk of extinction than those in forests, grasslands and coastal ecosystems. For North America alone, the projected extinction rate for freshwater fauna is five times greater than that for terrestrial fauna--a rate comparable to the species loss in tropical rainforest. Because many of these extinctions go unseen, the level of assessment and knowledge of the status and trends of freshwater species are still very poor, with species going extinct before they are even taxonomically classified. Increasing human population growth and achieving the sustainable development targets set forth in 2002 will place even higher demands on the already stressed freshwater ecosystems, unless an integrated approach to managing water for people and ecosystems is implemented by a broad constituency. To inform and implement policies that support an integrated approach to water management, as well as to measure progress in halting the rapid decline in freshwater species, basin-level indicators describing the condition and threats to freshwater ecosystems and species are required. This paper discusses the extent and quality of data available on the number and size of populations of freshwater species, as well as the change in the extent and condition of natural freshwater habitats. The paper presents indicators that can be applied at multiple scales, highlighting the usefulness of using remote sensing and geographical information systems technologies to fill some of the existing information gaps. Finally, the paper includes an analysis of major data gaps and information needs with respect to freshwater species to measure progress towards the 2010 biodiversity targets.  相似文献   

20.
Synopsis Analysis of the piscivore guild in fish species-rich lake and stream systems in eastern Ontario showed the co-occurrence of three types: (1) specialists that became piscivorous at the age of a few weeks (Esox, Micropterus); (2) ‘secondary’ piscivores that are fish-eaters only later in life (Perca, Ambloplites); and (3) species in which fish consumption is limited to taking some larvae (Lepomis macrochirus). In the first group the basic series of dietary shifts that characterize many long-lived fish (i.e. zooplankton followed by small invertebrates then large invertebrates and finally fish); is greatly accelerated. Prey size increases with growth. Overall prey selection was on the basis of body size and abundance. Most piscivores took a range of fish prey. There was little evidence of specialization at the species level. Esox and Micropterus spawn some weeks ahead of their major prey species. This is seen as adaptive. Their young harvest the larvae of the latter. The ensuing predator/prey association with growth is highly advantageous to the piscivore as prey of optimum body size are thus continually available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号