首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our study immunohistochemically evaluated the localization patterns of small Rho GTPases and β-catenin during regeneration of the rat submandibular gland. After 7?days of obstruction, regenerating glands were collected at days 0, 3, 7, 11 and 14 after duct release to study regeneration. RhoA was detected strongly and RhoC was detected weakly in the cytoplasm of newly formed acinar cells from day 3 to 7, and both RhoA and RhoC at the basal site and cytoplasm were detected moderately from day 11 to 14. RhoB was detected strongly and moderately in the cytoplasm of newly formed and matured acinar cells, respectively, and detected strongly in duct-like structures (DLSs) and intercalated ducts (ICDs). Rac1 was detected at the cell–cell and subcellular region, but β-catenin was not observed in newly formed acinar cells. Rac1 immunolabeling gradually reduced, and the β-catenin staining pattern became stronger. p-Rac1, a phosphorylated form of Rac1, was observed in the cytoplasm of newly formed acinar cells. At apical and subcellular region of DLSs and ICDs, Rac1 and β-catenin were detected. These findings suggest that RhoA and RhoC might be involved in the actin cytoskeleton at the basolateral site of regenerating acinar cells, and RhoB might play a unique role in regenerating acinar cells and in DLSs and ICDs. Rac1 and β-catenin at the cell–cell region might play important roles in cell–cell adhesion and the differentiation of regenerating acinar cells, as well as actin reconstruction at apical and subcellular regions of DLSs and ICDs.  相似文献   

2.
Summary For unexplained reasons, nerve growth factor (NGF) exists in very high concentrations in the submandibular gland of the mouse. The NGF in the gland, called 7S-NGF, is a non-covalent complex of three protein subunits, named -, - and -NGF. All the known biological activity resides in the -NGF subunit, and previous studies have shown that -NGF is present in much greater concentrations in the male submandibular gland than in the female gland. The higher concentration in the male is due to the fact that -NGF is synthesized in the granular tubule cells of the submandibular gland. These cells are much more numerous in the male gland.In contrast to -NGF, neither the concentrations of and subunits nor their cellular localization in the mouse submandibular gland have been established. In this study, radioimmunoassays specific for . and subunits determined that both are present in much higher concentrations in the male gland. Immunocytochemical work localized both subunits in the granular tubule cell in the male and female submandibular gland. This indicates that all the components of 7S-NGF exist in a single cell type in the gland and suggests that 7S-NGF can be formed within this cell and secreted as a complex into the saliva.  相似文献   

3.
Schober  Andreas  Arumäe  Urmas  Saarma  Mart  Unsicker  Klaus 《Brain Cell Biology》2000,29(3):209-213
Glial cell line-derived neurotrophic factor (GDNF), an important factor for developing and lesioned pre- and postganglionic sympathetic neurons, and its congeners signal through a receptor complex consisting of the tyrosine kinase c-Ret and a lipid-anchored α receptor (GFRα-1-4). Using in situ hybridization we show now that the mRNA for GFRα-2 is abundant in the adult rat adrenal medulla and its chromaffin cells. Coexpression of c-Ret and GFRα-1 mRNA's is restricted to a scarce subpopulation of medullary sympathetic neurons. Both GFRα-1 and GFRα-2 mRNA's are associated with preganglionic nerve trunks in the adrenal cortex. It is conceivable therefore that GDNF and related factors may activate chromaffin and preganglionic Schwann cells through a GFR-α receptor in absence of c-Ret.  相似文献   

4.
Berry  M.  Hunter  A. S.  Duncan  A.  Lordan  J.  Kirvell  S.  Tsang  W.-L.  Butt  A. M. 《Brain Cell Biology》1998,27(12):915-937
The anterior medullary velum (AMV) of adult Wistar rats was lesioned in the midsagittal plane, transecting all decussating axons including those of the central projection of the IVth nerve. At selected times up to 200 days after transection, the degenerative and regenerative responses of axons and glia were analyzed using transmission and scanning electron microscopy and immunohistochemistry. In particular, both the capacity of oligodendrocytes to remyelinate regenerated fibers and the stability of the CNS/PNS junctional zone of the IVth nerve rootlet were documented. Transected central AMV axons exhibited four patterns of fiber regeneration in which fibers grew: rostrocaudally in the reactive paralesion neuropil (Group 1); randomly within the AMV (Group 2); into the ipsilateral IVth nerve rootlet, after turning at the lesion edge and growing recurrently through the old degenerated contralateral central trochlear nerve trajectory (Group 3); and ectopically through paralesion tears in the ependyma onto the surface of the IVth ventricle (Group 4). Group 1–3 axons regenerated unperturbed through degenerating central myelin, reactive astrocytes, oligodendrocytes, microglia, and large accumulations of hematogenous macrophages. Only Group 3 axons survived long term in significant numbers, and all became myelinated by oligodendrocytes, ultimately establishing thin sheaths with relatively normal nodal gaps and intersegmental myelin sheath lenghts. Schwann cells at the CNS/PNS junction of the IVth nerve rootlet did not invade the CNS, but astrocyte processes grew across the junction into the PNS portion of the IVth nerve. The basal lamina of the junctional glia limitans remained stable throughout the experimental period.  相似文献   

5.
Exit of cytochrome c from mitochondria into the cytosol has been implicated as an important step in apoptosis. In the cytosol, cytochrome c binds to the CED-4 homologue, Apaf-1, thereby triggering Apaf-1–mediated activation of caspase-9. Caspase-9 is thought to propagate the death signal by triggering other caspase activation events, the details of which remain obscure. Here, we report that six additional caspases (caspases-2, -3, -6, -7, -8, and -10) are processed in cell-free extracts in response to cytochrome c, and that three others (caspases-1, -4, and -5) failed to be activated under the same conditions. In vitro association assays confirmed that caspase-9 selectively bound to Apaf-1, whereas caspases-1, -2, -3, -6, -7, -8, and -10 did not. Depletion of caspase-9 from cell extracts abrogated cytochrome c–inducible activation of caspases-2, -3, -6, -7, -8, and -10, suggesting that caspase-9 is required for all of these downstream caspase activation events. Immunodepletion of caspases-3, -6, and -7 from cell extracts enabled us to order the sequence of caspase activation events downstream of caspase-9 and reveal the presence of a branched caspase cascade. Caspase-3 is required for the activation of four other caspases (-2, -6, -8, and -10) in this pathway and also participates in a feedback amplification loop involving caspase-9.  相似文献   

6.
Summary The 7S nerve growth factor molecule, found in the mouse submandibular gland, is comprised of three distinct protein subunits named , and -NGF. In this paper, radioimmunoassays specific for each subunit were used to measure the concentrations of these subunits in homogenates of mouse submandibular gland. It was determined that there were excess concentrations of both the and subunits, more than enough to bind all of the -NGF in the gland to form 7S-NGF. The radioimmunoassay data was confirmed by gel filtration experiments. In the gel filtration experiments, the excess and subunits eluted at positions which would indicate that these excess subunits were free and not bound in the 7S-NGF complex. The identity of the excess and subunits was substantiated by ion exchange chromatography, isoelectric focusing polyacrylamide gels and immunoblotting experiments. In conclusion, there are considerable quantities of and subunits present in the submandibular gland which are not bound to -NGE The functional significance of these excess concentrations of the and subunits is not known.  相似文献   

7.
 Fibroblast growth factor 2 (FGF-2), which occurs in various isoforms both species and tissue specifically, regulates cell proliferation and differentiation via a dual receptor system consisting of heparan sulphate proteoglycans and receptor tyrosine kinases (FGFRs). This study demonstrates for the first time the distribution pattern of FGF-2 and the receptors FGFR 1–4 in the normal seminiferous epithelium of adult men. In western blot analyses, the polyclonal antibody, anti-FGF-2, shows two immunoreactive bands at 18 and 24 kDa. On paraffin sections, positive immunoreaction occurs within the cytoplasm of spermatogonia. The distribution pattern of the polyclonal anti-FGFR 1–4 antibodies is as follows: anti-FGFR-1 (one 68-kDa band) stains nuclei and cytoplasm of spermatogonia; anti-FGFR-3 (five bands at 68, 78, 105, 125 and 145 kDa) stains the nuclei of all germ cells except those of elongated spermatids; and anti-FGFR-4 (one 48-kDa band) stains the cytoplasm of primary pachytene spermatocytes. We were unable to demonstrate FGFR-2 immunoreactivity either in western blot analysis or on paraffin sections. This distribution pattern suggests that FGF-2 in spermatogonia is involved in the autocrine and paracrine regulation of the proliferation and differentiation of spermatogonia and spermatocytes via the receptors FGFR-1, FGFR-3 and FGFR-4. Accepted: 23 December 1997  相似文献   

8.
 We characterized an amphioxus NK-2 homeobox gene (AmphiNk2–1), a homologue of vertebrate Nkx2–1, which is involved in the development of the central nervous system and thyroid gland. At the early neurula stage of amphioxus, AmphiNk2–1 expression is first detected medially in the neural plate. By the mid-neurula stage, expression is localized ventrally in the nerve cord and also begins in the endoderm. During the late neurula stage, the ventral neural expression becomes transiently segmented posteriorly and is then down-regulated except in the cerebral vesicle at the anterior end of the central nervous system. Within the cerebral vesicle AmphiNk2–1 is expressed in a broad ventral domain, probably comprising both the floor plate and basal plate regions; this pattern is comparable to Nkx2–1 expression in the mouse diencephalon. In the anterior part of the gut, expression becomes intense in the endostyle (the right wall of the pharynx), which is the presumed homologue of the vertebrate thyroid gland. More posteriorly, there is transitory expression in the midgut and hindgut. In sum, the present results help to support homologies (1) between the amphioxus endostyle and the vertebrate thyroid gland and (2) between the amphioxus cerebral vesicle and the vertebrate diencephalic forebrain. Received: 4 September 1998 / Accepted: 24 October 1998  相似文献   

9.

Acknowledgments

We appreciate the invaluable contributions of the following reviewers during the editing of Vol. 8 Nos. 1–2.  相似文献   

10.
Molecular and Cellular Biochemistry - The era of induced pluripotent stem cells (iPSCs) was used as novel biotechnology to replace embryonic stem cells bypassing the ethical concerns and problems...  相似文献   

11.
12.

Background

We previously showed that beta-amyloid (Aβ), a peptide considered as relevant to Alzheimer''s Disease, is able to act as a neuromodulator affecting neurotransmitter release in absence of evident sign of neurotoxicity in two different rat brain areas. In this paper we focused on the hippocampus, a brain area which is sensitive to Alzheimer''s Disease pathology, evaluating the effect of Aβ (at different concentrations) on the neurotransmitter release stimulated by the activation of pre-synaptic cholinergic nicotinic receptors (nAChRs, α4β2 and α7 subtypes). Particularly, we focused on some neurotransmitters that are usually involved in learning and memory: glutamate, aspartate and GABA.

Methodology/Findings

We used a dual approach: in vivo experiments (microdialysis technique on freely moving rats) in parallel to in vitro experiments (isolated nerve endings derived from rat hippocampus). Both in vivo and in vitro the administration of nicotine stimulated an overflow of aspartate, glutamate and GABA. This effect was greatly inhibited by the highest concentrations of Aβ considered (10 µM in vivo and 100 nM in vitro). In vivo administration of 100 nM Aβ (the lowest concentration considered) potentiated the GABA overflow evoked by nicotine. All these effects were specific for Aβ and for nicotinic secretory stimuli. The in vitro administration of either choline or 5-Iodo-A-85380 dihydrochloride (α7 and α4β2 nAChRs selective agonists, respectively) elicited the hippocampal release of aspartate, glutamate, and GABA. High Aβ concentrations (100 nM) inhibited the overflow of all three neurotransmitters evoked by both choline and 5-Iodo-A-85380 dihydrochloride. On the contrary, low Aβ concentrations (1 nM and 100 pM) selectively acted on α7 subtypes potentiating the choline-induced release of both aspartate and glutamate, but not the one of GABA.

Conclusions/Significance

The results reinforce the concept that Aβ has relevant neuromodulatory effects, which may span from facilitation to inhibition of stimulated release depending upon the concentration used.  相似文献   

13.
As a continuation of our efforts to discover and develop the apoptosis inducing 1-benzoyl-3-cyanopyrrolo[1,2-a]quinolines as potential anticancer agents, we explored substitutions at the 4-, 5-, 6-, 7- and 8-positions of pyrrolo[1,2-a]quinoline. SAR studies showed that substitution at the 6-position by a small group such as Cl resulted in potent compounds. Substitutions at the 5- and 8-positions were tolerated while substitutions at the 4- and 7-position led to inactive compounds. Several compounds, including 2c, 3a, 3b and 3f, were found to be highly active against human breast cancer cells T47D with EC50 values of 0.053–0.080 μM, but much less active against human colon cancer cells HCT116 and hepatocellular carcinoma cancer cells SNU398 in the caspase activation assay. Compound 3f also was found to be highly active with a GI50 value of 0.018 μM against T47D cells in a growth inhibition assay.  相似文献   

14.
Plasma Physics Reports - The solar proton events on September 4–10, 2017 motivated us to reconsider the hypothesis of the presence of two phases of acceleration of charged particles in solar...  相似文献   

15.
In recent years, it has become clear that the neuronal nicotinic acetylcholine receptor (nAChR) is a valid target in the treatment of a variety of diseases, including Alzheimer’s disease, anxiety, and nicotine addiction. As with most membrane proteins, information on the three-dimensional (3D) structure of nAChR is limited to data from electron microscopy, at a resolution that makes the application of structure-based design approaches to develop specific ligands difficult. Based on a high-resolution crystal structure of AChBP, homology models of the extracellular domain of the neuronal rat and human nAChR subtypes α4β2 and α7 (the subtypes most abundant in brain) were built, and their stability assessed with molecular dynamics (MD). All models built showed conformational stability over time, confirming the quality of the starting 3D model. Lipophilicity and electrostatic potential studies performed on the rat and human α4β2 and α7 nicotinic models were compared to AChBP, revealing the importance of the hydrophobic aromatic pocket and the critical role of the α-subunit Trp—the homolog of AChBP-Trp 143—for ligand binding. The models presented provide a valuable framework for the structure-based design of specific α4β2 nAChR subtype ligands aimed at improving therapeutic and diagnostic applications. Figure Electrostatic surface potential of the binding site cavity of the neuronal nicotinic acetylcholine receptor (nAChR). Nicotinic models performed with the MOLCAD program: a rat α7, b rat α4β2, c human α7, d human α4β2. All residues labeled are part of the α7 (a,c) or α4 (b,d) subunit with the exception of Phe 117, which belongs to subunit β2 (d). Violet Very negative, blue negative, yellow neutral, red very positive  相似文献   

16.
Decapping is a critical step in the conserved 5′-to-3′ mRNA decay pathway of eukaryotes. The hetero-octameric Lsm1-7–Pat1 complex is required for normal rates of decapping in this pathway. This complex also protects the mRNA 3′-ends from trimming in vivo. To elucidate the mechanism of decapping, we analyzed multiple lsm1 mutants, lsm1-6, lsm1-8, lsm1-9, and lsm1-14, all of which are defective in decapping and 3′-end protection but unaffected in Lsm1-7–Pat1 complex integrity. The RNA binding ability of the mutant complex was found to be almost completely lost in the lsm1-8 mutant but only partially impaired in the other mutants. Importantly, overproduction of the Lsm1-9p- or Lsm1-14p-containing (but not Lsm1-8p-containing) mutant complexes in wild-type cells led to a dominant inhibition of mRNA decay. Further, the mRNA 3′-end protection defect of lsm1-9 and lsm1-14 cells, but not the lsm1-8 cells, could be partly suppressed by overproduction of the corresponding mutant complexes in those cells. These results suggest the following: (1) Decapping requires both binding of the Lsm1-7–Pat1 complex to the mRNA and facilitation of the post-binding events, while binding per se is sufficient for 3′-end protection. (2) A major block exists at the post-binding steps in the lsm1-9 and lsm1-14 mutants and at the binding step in the lsm1-8 mutant. Consistent with these ideas, the lsm1-9, 14 allele generated by combining the mutations of lsm1-9 and lsm1-14 alleles had almost fully lost the RNA binding activity of the complex and behaved like the lsm1-8 mutant.  相似文献   

17.
Compression wood (CW) contains higher quantities of β-1-4-galactan than does normal wood (NW). However, the physiological roles and ultrastructural distribution of β-1-4-galactan during CW formation are still not well understood. The present work investigated deposition of β-1-4-galactan in differentiating tracheids of Cryptomeria japonica during CW formation using an immunological probe (LM5) combined with immunomicroscopy. Our immunolabeling studies clearly showed that differences in the distribution of β-1-4-galactan between NW (and opposite wood, OW) and CW are initiated during the formation of the S1 layer. At this stage, CW was strongly labeled in the S1 layer, whereas no label was observed in the S1 layer of NW and OW. Immunogold labeling showed that β-1-4-galactan in the S1 layer of CW tracheids significantly decreased during the formation of the S2 layer. Most β-1-4-galactan labeling was present in the outer S2 region in mature CW tracheids, and was absent in the inner S2 layer that contained helical cavities in the cell wall. In addition, delignified CW tracheids showed significantly more labeling of β-1-4-galactan in the secondary cell wall, suggesting that lignin is likely to mask β-1-4-galactan epitopes. The study clearly showed that β-1-4-galactan in CW was mainly deposited in the outer portion of the secondary cell wall, indicating that its distribution may be spatially consistent with lignin distribution in CW tracheids of Cryptomeria japonica.  相似文献   

18.
[4-14C] Oestradiol-17β was perfused through isolated brains of male and ovariectomized female rats. Two different perfusion media were used. The uptake of oestradiol-17β was higher in female brains, the highest concentrations being found in the hypophysis and hypothalamus. Oestradiol-17β was metabolized to a greater extent by female brains, the most important metabolite being oestrone. Additionally, 2-hydroxyoestradiol-17β, 6ζ-hydroxyoestradiol-17β, and 7α-hydroxyoestradiol-17β were found; 7α-hydroxyoestrone and another polar metabolite could not be definitely identified. Quantitatively, 2-hydroxylation was no more important than hydroxylation at C atom 6 or 7.  相似文献   

19.
Techniques have been developed for the regeneration of Moricandia arvensis from complex explants. Hypocotyl segments and cotyledonary explants regenerated shoots, but the most efficient plant regeneration was from stem sections taken from in vitro grown shoots. Regeneration from these three explant types was tested on a range of concentrations of benzylaminopurine and either naphthylene acetic acid or indole acetic acid. Regeneration from all three explants was much higher on indole acetic acid than on naphthylene acetic acid and the ratio of auxin to cytokinin was also significant in determining the response of explants. Optimum regeneration was on 1mg/l IAA with 1mg/l BAP. Plants could be transferred to soil and grown to flowering in the glasshouse.Abbreviations GDC glycine decarboxylase - BAP benzyl aminopurine - NAA naphthalene acetic acid - IAA indole acetic acid  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号