首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
EcoRII Methyltransferase (M.EcoRII) which methylates the second C in the sequence CCWGG (W = A/T) is autogenously regulated by binding to the 5' regulatory region of its gene. DNase I footprinting experiments demonstrated that purified M.EcoRII protected a 47-49 bp region of DNA immediately upstream of the ecoRIIM coding region. We have studied this interaction with mutants of the enzyme, in vitro by DNA binding and in vivo by investigating the repression in trans of expression of beta-galactosidase from an ecoRIIM-lacZ operon fusion. Two catalytically active mutants failed to repress expression of the fusion whereas catalytically inactive mutants had repressor activity. However, with one of the catalytically inactive mutants, C186S, in which the catalytic Cys was replaced with Ser, and which bound unmethylated CCWGG sequences, repression could only be demonstrated when those sequences in cellular DNA were methylated by supplying a cloned dcm gene in trans. In vitro binding of the DNA fragment containing the ecoRIIM regulatory region was detected only with the mutants that showed repressor activity, including C186S. Results indicate that down-regulation of the gene in vivo and binding to the promoter in vitro are not dependent on the catalytic properties of M.EcoRII. Mobility shift experiments with C186S also revealed that it could bind either the promoter or unmethylated CCWGG sites, but not both. We conclude that the concentration of unmethylated CCWGG sites controls expression from the ecoRIIM promoter.  相似文献   

4.
5.
6.
Genetics of the iron dicitrate transport system of Escherichia coli.   总被引:43,自引:23,他引:20       下载免费PDF全文
Escherichia coli B and K-12 express a citrate-dependent iron(III) transport system for which three structural genes and their arrangement and products have been determined. The fecA gene of E. coli B consists of 2,322 nucleotides and encodes a polypeptide containing a signal sequence of 33 amino acids. The cleavage site was determined by amino acid sequence analysis of the unprocessed protein and the mature protein. For the processed form a length of 741 amino acids was calculated. The mature FecA protein in the outer membrane contains at the N terminus the "TonB box," a pentapeptide, which has hitherto been found in all receptors and colicins which functionally require the TonB protein. In addition, the dyad repeat sequence GAAAATAATTCTTATTTCG is proposed to serve as the binding site of the Fur iron repressor protein. The fecB gene was mapped downstream of fecA and encodes a protein with an apparent molecular weight of 30,000. It was synthesized as a precursor, and the mature form was found in the periplasm. The fecD gene follows fecB and was related to a membrane-bound protein with an apparent molecular weight of 28,000. In Mu d1 insertion mutants upstream of fecA, the fec genes were not inducible by iron limitation and citrate, indicating a regulatory region, termed fecI, which controls fec gene expression.  相似文献   

7.
8.
A set of pseudorevertants of lactose operator-constitutive (lacOc) mutant has been obtained. Analysis of a subset of these pseudorevertants indicates that, in some cases, the secondary mutation alters the lactose repressor (lacl gene product), whereas in others it seems to have occurred in the lactose operator (lacO) itself. Of the lacl gene mutations, the lacl8 mutation, already known to suppress all lacOc mutations nonspecifically, was recovered by a selection technique developed for this study. However, two additional lacl gene mutants were selected which appear to suppress lacOc sequences in a more-or-less specific fashion; repressor interaction with some operator sequences is facilitated, whereas the binding with lacO+ and others is attenuated concomitantly.  相似文献   

9.
Human α-synuclein is the causative protein of several neurodegenerative diseases, such as Parkinson's disease (PD) and dementia with Lewy Bodies (DLB). The N-terminal half of α-synuclein contains seven imperfect repeat sequences. One of the PD/DLB-causing point mutations, E46K, has been reported in the imperfect repeat sequences of α-synuclein, and is prone to form amyloid fibrils. The presence of seven imperfect repeats in α-synuclein raises the question of whether or not mutations corresponding to E46K in the other imperfect KTKE(Q)GV repeats have similar effects on aggregation and fibrillation, as well as their propensities to form α-helices. To investigate the effect of E(Q)/K mutations in each imperfect repeat sequence, we substituted the amino acid corresponding to E46K in each of the seven repeated sequences with a Lys residue. The mutations in the imperfect KTKE(Q)GV repeat sequences of the N-terminal region were prone to decrease the lag time of fibril formation. In addition, AFM imaging suggested that the Q24K mutant formed twisted fibrils, while the other mutants formed spherical aggregates and short fibrils. These observations indicate that the effect of the mutations on the kinetics of fibril formation and morphology of fibrils varies according to their location.  相似文献   

10.
11.
cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda, consists of three binding sites (called R3, R2 and R1) for gpNu1, the small subunit of terminase; and I1, a binding site for integration host factor (IHF), the DNA bending protein of Escherichia coli. cosB is located between cosN, the site where terminase introduces staggered nicks to generate cohesive ends, and the Nu1 gene; the order of sites is: cosN-R3-I1-R2-R1-Nu1. A series of lambda mutants have been constructed that have single base-pair C-to-T transition mutations in R3, R2 and R1. A single base-pair transition mutation within any one of the gpNul binding sites renders lambda dependent upon IHF for plaque formation. lambda phage with mutations in both R2 and R3 are incapable of plaque formation even in the presence of IHF. Phages that carry DNA insertions between R1 and R2, from 7 to 20 base-pairs long, are also IHF-dependent, demonstrating the requirement for a precise spacing of gpNu1 binding sites within cosB. The IHF-dependent phenotype of a lambda mutant carrying a deletion of the R1 sequence indicates that IHF obviates the need for terminase binding to the R1 site. In contrast, a lambda mutant deleted for R2 and R1 fails to form plaques on either IHF+ or IHF- cells, indicating terminase binding of R2 is involved in suppression of R mutants by IHF. A fourth R sequence, R4, is situated on the left side of cosN; a phage with a mutant R4 sequence shows a reduced burst size on both an IHF+ and an IHF- host. The inability of the R4- mutant to be suppressed by IHF, plus the fact that R4 does not bind gpNu1, suggests R4 is not part of cosB and may play a role in DNA packaging that is distinct from that of cosB.  相似文献   

12.
Analysis of in vitro binding of U1-A protein mutants to U1 snRNA.   总被引:6,自引:1,他引:5       下载免费PDF全文
Despite the great sequence similarity between U1A and U2B", both proteins do have a difference in RNA binding specificity and in the way they bind to their cognate RNAs. The U1A protein is able to bind in vitro U1 RNA independently of other factors. The U2B" protein binds specifically to U2 RNA in the presence of the U2A' protein only. We have compared the effect on RNA binding of multiple double point mutations at analogous positions in the U1A and U2B" protein. The results obtained show that amino acids at almost all of the analogous positions tested in U1A and U2B" have a comparable qualitative effect on RNA binding although the quantitative effect of mutations on U2B" is more severe than on U1A. Using U1A mutants with internal duplications a distinct area of the RNP motif of the U1A protein was identified which appears not to be directly involved in U1 RNA binding. In addition, roles of the highly conserved RNP1 and RNP2 sequences of the N-terminal RNP motif of the U1A protein, are investigated by replacing them with the analogous U1-70K sequences.  相似文献   

13.
The coat protein of bacteriophage MS2 is a translational repressor. It inhibits the synthesis of the viral replicase by binding a specific RNA structure that contains the replicase translation initiation region. In order to begin a genetic dissection of the repressor activity of coat protein, a two-plasmid system has been constructed that expresses coat protein and a replicase-beta-galactosidase fusion protein from different, compatible plasmids containing different antibiotic-resistant determinants. The coat protein expressed from the first plasmid (pCT1) represses synthesis of a replicase-beta-galactosidase fusion protein encoded on the other plasmid (pRZ5). Mutations in the translational operator or in coat protein result in constitutive synthesis of the enzyme. This permits the straightforward isolation of mutations in the coat sequence that affect repressor function. Because of the potential importance of cysteine residues for RNA binding, mutations were constructed that substitute serines for the cysteine residues normally present at positions 46 and 101. Both of these mutations result in translational repressor defects. Chromatographic and electron microscopic analyses indicate that the plasmid-encoded wild-type coat protein forms capsids in vivo. The ability of the mutants to adopt and/or maintain the appropriate conformation was assayed by comparing them to the wild-type protein for their ability to form capsids. Both mutants exhibited evidence of improper folding and/or instability as indicated by their aberrant elution behavior on a column of Sepharose CL-4B. Methods were developed for the rapid purification of plasmid-encoded coat protein, facilitating future biochemical analyses of mutant coat proteins.  相似文献   

14.
Based on primary sequence homology between the lactose repressor protein and periplasmic sugar-binding proteins (Müller-Hill, B. (1983) Nature 302, 163-164), a hypothetical sugar-binding site for the lac repressor was proposed using the solved x-ray crystallographic structure of the arabinose-binding protein (ABP) (Sams, C. F., Vyas, N. K., Quiocho, F. A., and Matthews, K. S. (1984) Nature 310, 429-430). By analogy to Arg151 in the ABP sugar site, Arg197 is predicted to play an important role in lac repressor binding to inducer sugars. Hydrogen bonding occurs between Arg151 and the ring oxygen and 4-hydroxyl of the sugar ligand, two backbone carbonyls, and a side chain in ABP, and similar interactions in the lac repressor would be anticipated. To test this hypothesis, Arg197 in the lac repressor protein was altered by oligonucleotide-directed site-specific mutagenesis to substitute Gly, Leu, or Lys. Introduction of these substitutions at position 197 had no effect on operator binding parameters of the isolated mutant proteins, whereas the affinity for inducer was dramatically decreased, consistent with in vivo phenotypic behavior obtained by suppression of nonsense mutations at this site (Kleina, L. G., and Miller, J. H. (1990) J. Mol. Biol. 212, 295-318). Inducer binding affinity was reduced approximately 3 orders of magnitude for Leu, Gly, or Lys substitutions, corresponding to a loss of 50% of the free energy of binding. The pH shift characteristic of wild-type repressor is conserved in these mutants. Circular dichroic spectra demonstrated no significant alterations in secondary structure for these mutants. Thus, the primary effect of substitution for Arg197 is a very significant decrease in the affinity for inducer sugars. Arginine is uniquely able to make the multiple contacts found in the ABP sugar site, and we conclude that this residue plays a similar role in sugar binding for lactose repressor protein. These results provide experimental validation for the proposed homology between ABP and the lac repressor and suggest that homology with ABP may be employed to generate additional insight into the structure and function of this regulatory protein.  相似文献   

15.
Lambda tp mutants, selected for their ability to form turbid plaques on lon hosts, overproduce repressor. The tp1 and tp2 mutations have been located within (or adjacent to) the cIII gene. The tp1 mutation reduced late gene expression, as measured by endolysin synthesis (in the absence of functional cI repressor) and progeny phage yield. The tp4 mutation was mapped in the cY-cII region, and complementation tests indicated that tp4 affects the diffusible product of the cII gene. The tp4 mutation also reduced progeny production, but did not markedly affect endolysin synthesis.  相似文献   

16.
The LexA repressor of Escherichia coli represses a set of genes that are expressed in the response to DNA damage. After inducing treatments, the repressor is inactivated in vivo by a specific cleavage reaction which requires an activated form of RecA protein. In vitro, specific cleavage requires activated RecA at neutral pH and proceeds spontaneously at alkaline pH. We have isolated and characterized a set of lexA mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Forty-six independent mutants, generated by hydroxylamine and formic acid mutagenesis, were isolated by a screen involving the use of operon fusions. DNA sequence analysis identified 20 different mutations. In a recA mutant, all but four of the mutant proteins functioned as repressor as well as wild-type LexA. In a strain carrying a constitutively active recA allele, recA730, all the mutant proteins repressed a sulA::lacZ fusion more efficiently than the wild-type repressor, presumably because they were cleaved poorly or not at all by the activated RecA protein. These 20 mutations resulted in amino acid substitutions in 12 positions, most of which are conserved between LexA and four other cleavable proteins. All the mutations were located in the hinge region or C-terminal domain of the protein, portions of LexA previously implicated in the specific cleavage reactions. Furthermore, these mutations were clustered in three regions, around the cleavage site (Ala-84-Gly-85) and in blocks of conserved amino acids around two residues, Ser-119 and Lys-156, which are believed essential for the cleavage reactions. These three regions of the protein thus appear to play important roles in the cleavage reaction.  相似文献   

17.
A novel antivirulence element in the temperate bacteriophage HK022.   总被引:1,自引:0,他引:1       下载免费PDF全文
Lysogens of the temperate lambdoid phage HK022 are immune to superinfection by HK022. Superinfection immunity is conferred in part by the action of the HK022 CI repressor at the O.R operators. In this work, we have identified an additional regulatory element involved in immunity. This site, termed OFR (operator far right), is located just downstream of the cro gene, more than 250 nucleotides distant from OR. The behavior of phage containing a mutation in OFR suggests that the wild-type site functions as an antivirulence element. HK022 OFR- mutants were able to form turbid plaques indistinguishable from those of the wild type. However, they gave rise to virulent derivatives at a far higher frequency than the wild type (approximately 10(-5) for OFR- versus about 10(-9) for the wild type). This frequency was so high that cultures of HK022 OFR- lysogens were rapidly overgrown by virulent derivatives. Whereas virulent mutants arising from a wild-type OFR+ background contained mutations in both OR1 and OR2, virulent derivatives of the OFR- mutant phage contained a single mutation in either OR1 or OR2. We conclude that the wild-type OFR site functions to prevent single mutations in OR from conferring virulence. The mechanism by which OFR acts is not yet clear. Both CI and Cro bound to OFR and repressed a very weak rightward promoter (PFR). It is unlikely that repression of PFR by CI or Cro binding to OFR can account in full for the antivirulence phenotype conferred by this element, since PFR is such a weak promoter. Other models for the possible action of OFR are discussed.  相似文献   

18.
D W Martin  S P Deb  J S Klauer    S Deb 《Journal of virology》1991,65(8):4359-4369
The herpes simplex virus type 1 (HSV-1) OriS region resides within a 90-bp sequence that contains two binding sites for the origin-binding protein (OBP), designated sites I and II. A third presumptive OBP-binding site (III) within OriS has strong sequence similarity to sites I and II, but no sequence-specific OBP binding has yet been demonstrated at this site. We have generated mutations in sites I, II, and III and determined their replication efficiencies in a transient in vivo assay in the presence of a helper virus. Mutations in any one of the sites reduced DNA replication significantly. To study the role of OriS sequence elements in site I and the presumptive site III in DNA replication, we have also generated a series of mutations that span from site I across the presumptive binding site III. These mutants were tested for their ability to replicate and for the ability to bind OBP by using gel shift analyses. The results indicate that mutations across site I drastically reduce DNA replication. Triple-base-pair substitution mutations that fall within the crucial OBP-binding domain, 5'-YGYTCGCACT-3' (where Y represents C or T), show a reduced level of OBP binding and DNA replication. Substitution mutations in site I that are outside this crucial binding sequence show a more detrimental effect on DNA replication than on OBP binding. This suggests that these sequences are required for initiation of DNA replication but are not critical for OBP binding. Mutations across the presumptive OBP-binding site III also resulted in a loss in efficiency of DNA replication. These mutations influenced OBP binding to OriS in gel shift assays, even though the mutated sequences are not contained within known OBP-binding sites. Replacement of the wild-type site III with a perfect OBP-binding site I results in a drastic reduction of DNA replication. Thus, our DNA replication assays and in vitro DNA-binding studies suggest that the binding of the origin sequence by OBP is not the only determining factor for initiation of DNA replication in vivo.  相似文献   

19.
Mutational analysis of the inverted repeats of Tn3   总被引:1,自引:0,他引:1  
The transposase protein and the terminal inverted repeat sequences of the prokaryotic transposon Tn3 are essential for transposition. In order to determine the sequences within the inverted repeat necessary for transposition and interaction with transposase, we have constructed a series of mini-Tn3s in which specific mutations have been introduced into the inverted repeats. The effects of these mutations on transposition have been assayed in vivo using a mating-out transposition assay. Several single base-pair mutations within the transposase binding site reduce transposition frequency. Mutations that affect transposition show a greater effect when present in both inverted repeats than when present in only one inverted repeat.  相似文献   

20.
Phage Mu's c gene product is a cooperative regulatory protein that binds to a large, complex, tripartite 184-bp operator. To probe the mechanism of repressor action, we isolated and characterized 13 phage mutants that cause Mu to undergo lytic development when cells are shifted from 30 to 42 degrees C. This collection contained only four mutations in the repressor gene, and all were clustered near the N terminus. The cts62 substitution of R47----Q caused weakened specific DNA recognition and altered cooperativity in vitro. A functional repressor with only 63 amino acids of Mu repressor fused to a C-terminal fragment of beta-galactosidase was constructed. This chimeric protein was an efficient repressor, as it bound specifically to Mu operator DNA in vitro and its expression conferred Mu immunity in vivo. A DNA looping model is proposed to explain regulation of the tripartite operator site and the highly cooperative nature of repressor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号