首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological response of a bdelloid rotifer to desiccation   总被引:3,自引:0,他引:3  
We desiccated bdelloid rotifers (Macrotrachela quadricornifera), submitting the animals to four desiccation procedures (protocols A, B, C, D) that differed in the rate of water evaporation, in the time of desiccation, and in the substrates provided. We observed external morphological changes of the rotifer bodies during drying with scanning electron microscopy and, in parallel, assessed rates of recovery after a 7-day period of dormancy. Two protocols produced disorganized morphologies of the anhydrobiotic animals, with no (A) or very poor (B) recovery. Protocols C and D gave rather high rates of recovery and dry rotifers appeared unaltered and well organized. The different protocols affected rotifer morphology during the 7-day anhydrobiosis and rates of recovery after the 7-day anhydrobiosis; high recovery rates corresponded to well-organized morphologies of anhydrobiotic bdelloids, suggesting that a proper contraction of the body into a tun shape and probably a rigorous packing of internal structures are necessary for survival after anhydrobiosis. These features are affected by the time between water shortage and full desiccation, but also by the surrounding relative humidity and by the nature of the substrate. Possible adaptations of anhydrobiotic rotifers are discussed.  相似文献   

2.
To study the effect of anhydrobiosis on the rotifer life cycle, we dried a bdelloid species, Adineta ricciae, and determined the life-history traits of 1) the rehydrated animals and 2) the offspring produced after a period of dormancy. In the first experiment, a cohort was dried when 8-days-old, kept dry for 7 days and then rehydrated. Recovery was about 75%. The recovered rotifers had similar longevity and significantly higher fecundity than the hydrated controls. The time spent dry was completely disregarded by the anhydrobiotic rotifers, as predicted by the ‘Sleeping Beauty’ model. In the second experiment, we recorded the life-history traits of the orthoclones produced by recovered mothers aged 11 days, and 18 days. These orthoclones were coupled to controls that had been established from hydrated mothers aged 11 days and 18 days. The orthoclones produced after dormancy had significantly higher fecundity and longevity than the controls of same maternal age. Maternal age had a marked effect on the life-history traits of the orthoclones of both lines, causing the same loss of fitness in both.  相似文献   

3.
Some eukaryotes, including bdelloid rotifer species, are able to withstand desiccation by entering a state of suspended animation. In this ametabolic condition, known as anhydrobiosis, they can remain viable for extended periods, perhaps decades, but resume normal activities on rehydration. Anhydrobiosis is thought to require accumulation of the non-reducing disaccharides trehalose (in animals and fungi) or sucrose (in plant seeds and resurrection plants), which may protect proteins and membranes by acting as water replacement molecules and vitrifying agents. However, in clone cultures of bdelloid rotifers Philodina roseola and Adineta vaga, we were unable to detect trehalose or other disaccharides in either control or dehydrating animals, as determined by gas chromatography. Indeed, trehalose synthase genes (tps) were not detected in these rotifer genomes, suggesting that bdelloids might not have the capacity to produce trehalose under any circumstances. This is in sharp contrast to other anhydrobiotic animals such as nematodes and brine shrimp cysts, where trehalose is present during desiccation. Instead, we suggest that adaptations involving proteins might be more important than those involving small biochemicals in rotifer anhydrobiosis: on dehydration, P. roseola upregulates a hydrophilic protein related to the late embryogenesis abundant (LEA) proteins associated with desiccation tolerance in plants. Since LEA-like proteins have also been implicated in the desiccation tolerance of nematodes and micro-organisms, it seems that hydrophilic protein biosynthesis represents a common element of anhydrobiosis across several biological kingdoms.  相似文献   

4.
Anhydrobiosis in bdelloid species, populations and individuals   总被引:1,自引:0,他引:1  
Bdelloid rotifers are aquatic microinvertebrates common in waterbodies and in unstable "terrestrial" habitats, such as mossesand lichens. The key to the adaptability to live in unstablehabitats is their capacity to tolerate habitat desiccation throughanhydrobiosis, that is assumed apomorphic to the taxon. Thelife history traits of some "moss" and "water" species of bdelloidare compared, showing that the water species have shorter lifespan, higher fecundity and earlier age at first reproductionthan the moss species. These traits are discussed in the lightof current life history theories. Contrary to the assumptionsof the models, anhydrobiosis of bdelloids does not appear toimply energy demand. Past research on bdelloid anhydrobiosisis briefly reviewed, focusing on the factors that affect anhydrobiosissuccess, like morphological and physiological adjustments, andon the effect of events of anhydrobiosis during life time. Desiccationproduces a time shift on the age of the bdelloid, which disregardsthe time spent as anhydrobiotic, following the so-called "SleepingBeauty" model. Average fecundity is never found to decreaseas a consequence of anhydrobiosis, but is either equal or evenhigher than that of a hydrated rotifer. Bdelloid populationsseem to benefit from anhydrobiosis; fitness of a bdelloid isfound to decline, if populations are maintained hydrated forseveral generations, but not if populations are cyclically desiccated.We hypothesize that anhydrobiosis can be an essential eventfor long-term survival of bdelloid populations.  相似文献   

5.
Eukaryotes able to withstand desiccation enter a state of suspended animation known as anhydrobiosis, which is thought to require accumulation of the non-reducing disaccharides trehalose (animals, fungi) and sucrose (plants), acting as water replacement molecules and vitrifying agents. We now show that clonal populations of bdelloid rotifers Philodina roseola and Adineta vaga exhibit excellent desiccation tolerance, but that trehalose and other disaccharides are absent from carbohydrate extracts of dried animals. Furthermore, trehalose synthase genes (tps) were not found in rotifer genomes. This first observation of animal anhydrobiosis without trehalose challenges our current understanding of the phenomenon and calls for a re-evaluation of existing models.  相似文献   

6.
Dormancy patterns in rotifers   总被引:9,自引:5,他引:4  
Dormancy is common among rotifers: monogononts produce resting eggs (diapause) commonly after switching to mictic phase, and bdelloids enter anhydrobiosis (quiescence) at any time during their life cycle. Monogononts are short-lived and inhabit coarse-grained environments; their dormancy is a long-lasting diapause, commonly initiated by indirect remote cues. Bdelloids live 3 times as long, live in fine-grained environments and enter short-lasting quiescence as a direct response to changing environment. The two dormancy forms of the rotifers can be related to the temporal variation of their environments and seem to represent diverse responses to disturbance occurring at different rates. The two strategies are alternative and mutually exclusive, as no single rotifer species seems capable of both diapause and quiescence. Dormancy has great ecological significance: it can carry the population through stressful conditions, promote species coexistence and serve as a biodiversity bank providing reliable colonization source.  相似文献   

7.
In 1702, Van Leeuwenhoek was the first to describe the phenomenon of anhydrobiosis in a species of bdelloid rotifer, Philodina roseola. It is the purpose of this review to examine what has been learned since then about the extreme desiccation tolerance in rotifers and how this compares with our understanding of anhydrobiosis in other organisms. Remarkably, much of what is known today about the requirements for successful anhydrobiosis, and the degree of biostability conferred by the dry state, was already determined in principle by the time of Spallanzani in the late 18th century. Most modern research on anhydrobiosis has emphasized the importance of the non-reducing disaccharides trehalose and sucrose, one or other sugar being present at high concentrations during desiccation of anhydrobiotic nematodes, brine shrimp cysts, bakers' yeast, resurrection plants and plant seeds. These sugars are proposed to act as water replacement molecules, and as thermodynamic and kinetic stabilizers of biomolecules and membranes. In apparent contradiction of the prevailing models, recent experiments from our laboratory show that bdelloid rotifers undergo anhydrobiosis without producing trehalose or any analogous molecule. This has prompted us to critically re-examine the association of disaccharides with anhydrobiosis in the literature. Surprisingly, current hypotheses are based almost entirely on in vitro data: there is very limited information which is more than simply correlative in the literature on living systems. In many species, disaccharide accumulation occurs at approximately the same time as desiccation tolerance is acquired. However, several studies indicate that these sugars are not sufficient for anhydrobiosis; furthermore, there is no conclusive evidence, through mutagenesis or functional knockout experiments, for example, that sugars are necessary for anhydrobiosis. Indeed, some plant seeds and micro-organisms, like the rotifer, exhibit excellent desiccation tolerance in the absence of high intracellular sugar concentrations. Accordingly, it seems appropriate to call for a re-evaluation of our understanding of anhydrobiosis and to embark on new experimental programmes to determine the key molecular mechanisms involved.  相似文献   

8.
In this review we analyze the dormancy strategies of metazoans inhabiting “hostile to life” habitats, which have a strong impact on their ecology and in particular on the traits of their life history. Tardigrades are here considered a model animal, being aquatic organisms colonizing terrestrial habitats. Tardigrades evolved a large variety of dormant stages that can be ascribed to diapause (encystment, cyclomorphosis, resting eggs) and cryptobiosis (anhydrobiosis, cryobiosis, anoxibiosis). In tardigrades, diapause and cryptobiosis can occur separately or simultaneously, consequently the adoption of one adaptive strategy is not necessarily an alternative to the adoption of the other. Encystment and cyclomorphosis are characterized by seasonal cyclic changes in morphology and physiology of the animals. They share several common features and their evolution is strictly linked to the molting process. A bet-hedging strategy with different patterns of egg hatching time has been observed in a tardigrade species. Four categories of eggs have been identified: subitaneous, delayed-hatching, abortive and diapause resting eggs, which needs a stimulus to hatch (rehydration after a period of desiccation). Cryptobiotic tardigrades are able to withstand desiccation (anhydrobiosis) and freezing (cryobiosis) at any stage of their life-cycle. This ability involves a complex array of factors working at molecular (bioprotectans), physiological and structural levels. Animal survival and the accumulation of molecular damage are related to the time spent in the cryptobiotic state, to the abiotic parameters during the cryptobiotic state, and to the conditions during initial and final phases of the process. Cryptobiosis evolved independently at least two times in tardigrades, in eutardigrades and in echiniscoids. Within each evolutionary line, the absence of cryptobiotic abilities is more related to selective pressures to local habitat adaptation than to phylogenetic relationships. The selective advantages of cryptobiosis (e.g. persistency in “hostile to life” habitats, reduction of competitors, parasites and predators, escaping in time from stressful conditions) could explain the high tardigrade species diversity and number of specimens found in habitats that dry out compared to freshwater habitats.  相似文献   

9.
Tardigrades represent one of the main animal groups with anhydrobiotic capacity at any stage of their life cycle. The ability of tardigrades to survive repeated cycles of anhydrobiosis has rarely been studied but is of interest to understand the factors constraining anhydrobiotic survival. The main objective of this study was to investigate the patterns of survival of the eutardigrade Richtersius coronifer under repeated cycles of desiccation, and the potential effect of repeated desiccation on size, shape and number of storage cells. We also analyzed potential change in body size, gut content and frequency of mitotic storage cells. Specimens were kept under non-cultured conditions and desiccated under controlled relative humidity. After each desiccation cycle 10 specimens were selected for analysis of morphometric characteristics and mitosis. The study demonstrates that tardigrades may survive up to 6 repeated desiccations, with declining survival rates with increased number of desiccations. We found a significantly higher proportion of animals that were unable to contract properly into a tun stage during the desiccation process at the 5th and 6th desiccations. Also total number of storage cells declined at the 5th and 6th desiccations, while no effect on storage cell size was observed. The frequency of mitotic storage cells tended to decline with higher number of desiccation cycles. Our study shows that the number of consecutive cycles of anhydrobiosis that R. coronifer may undergo is limited, with increased inability for tun formation and energetic constraints as possible causal factors.  相似文献   

10.
Some organisms can survive exposure to extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living nematode Aphelenchus avenae can be induced to enter the anhydrobiotic state by exposure to a moderate reduction in relative humidity. During this preconditioning period, the nematode accumulates large amounts of the disaccharide trehalose, which is thought to be necessary, but not sufficient, for successful anhydrobiosis. To identify other adaptations that are required for anhydrobiosis, we developed a novel SL1-based mRNA differential display technique to clone genes that are upregulated by dehydration in A. avenae. Three such genes, Aav-lea-1, Aav-ahn-1, and Aav-glx-1, encode, respectively, a late embryogenesis abundant (LEA) group 3 protein, a novel protein that we named anhydrin, and the antioxidant enzyme glutaredoxin. Strikingly, the predicted LEA and anhydrin proteins are highly hydrophilic and lack significant secondary structure in the hydrated state. The dehydration-induced upregulation of Aav-lea-1 and Aav-ahn-1 was confirmed by Northern hybridization and quantitative PCR experiments. Both genes were also upregulated by an osmotic upshift, but not by cold, heat, or oxidative stress. Experiments to investigate the relationship between mRNA levels and protein expression for these genes are in progress. LEA proteins occur commonly in plants, accumulating during seed maturation and desiccation stress; the presence of a gene encoding an LEA protein in an anhydrobiotic nematode suggests that some mechanisms of coping with water loss are conserved between plants and animals.  相似文献   

11.
12.
Abstract. Here we report the effect of food concentration on the recovery from anhydrobiosis of a bdelloid rotifer, Macrotrachela quadricornifera . Cohorts were either starved, or fed high or low concentrations of food, before being dried and their subsequent recovery rates determined. The rotifers starved for 3 d before anhydrobiosis recovered in significantly higher proportion, and those fed lower food concentration recovered better than those fed higher food concentration. In addition, starvation did not decrease the recovery of other bdelloid species ( Philodina roseola and Adineta sp. 1) which were either fed or starved before anhydrobiosis. These results suggest that a successful recovery from anhydrobiosis is not dependent on prior resource level supplied to the bdelloids. However, the lack of resources might not be the only factor in a successful recovery from anhydrobiosis. Observations using scanning electron microscopy of fed individuals of M. quadricornifera entering anhydrobiosis showed that some food remained in the digestive tract. Thus, we propose that the negative effect of rich food may be due to a purely mechanical effect and may be interfering with a proper folding of the rotifer body at the onset of anhydrobiosis. This contribution results from studies carried out in preparation for biological experiments scheduled on the International Space Station (ISS).  相似文献   

13.
Strategies to combat desiccation are critical for organisms living in arid and semi-arid areas. Larvae of the Australian chironomid Paraborniella tonnoiri resist desiccation by reducing water loss. In contrast, larvae of the African species Polypedilum vanderplanki can withstand almost complete dehydration, referred to as anhydrobiosis. For successful anhydrobiosis, the dehydration rate of P. vanderplanki larvae has to be controlled. Here, we desiccated larvae by exposing them to different drying regimes, each progressing from high to low relative humidity, and examined survival after rehydration. In larvae of P. vanderplanki, reactions following desiccation can be categorized as follows: (I) no recovery at all (direct death), (II) dying by unrepairable damages after rehydration (delayed death), and (III) full recovery (successful anhydrobiosis). Initial conditions of desiccation severely affected survival following rehydration, i.e. P. vanderplanki preferred 100% relative humidity where body water content decreased slightly. In subsequent conditions, unfavorable dehydration rate, such as more than 0.7 mg water lost per day, resulted in markedly decreased survival rate of rehydrated larvae. Slow dehydration may be required for the synthesis and distribution of essential molecules for anhydrobiosis. Larvae desiccated at or above maximum tolerable rates sometimes showed temporary recovery but died soon after.  相似文献   

14.
Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.  相似文献   

15.
Ricci  Claudia 《Hydrobiologia》2017,785(1):277-291

Bdelloid rotifers are mostly known for two peculiarities, continuous parthenogenetic reproduction and dormancy in response to habitat desiccation, a phenomenon named anhydrobiosis. These uncommon traits earned them the names of ‘evolutionary scandals’ and ‘sleeping beauties’, respectively. Relevant aspects of bdelloid biology have recently been described that connect parthenogenesis to anhydrobiosis and that might account for their evolutionary survival in spite of the conservative reproduction. In the present study, I explore recent literature, in the attempt to disentangle the apparent incongruency between the apomictic reproduction and the presumed long-term evolutionary survival of bdelloid species. Recent results remarkably improved our knowledge of bdelloid population biology, genetics, and molecular biology. The most relevant findings concern (i) acquisition of foreign genes through horizontal transfer, (ii) presence of divergent sequences possibly corresponding to ancient gene duplications and (iii) capacity to escape parasites: events that appear to be connected with dormancy. I also address the results of recent studies on the relationships between bdelloids and other rotifers, including acanthocephalans, in an attempt to highlight similarities and differences that should be clarified to better understand phylogenetic relationship among the Rotifera sensu lato.

  相似文献   

16.
17.
Macrotrachela quadricornifera, a bdelloid rotifer, is the animal model of an experiment scheduled on the International Space Station (ISS). The focus of the experiment is the role of the cytoskeleton during oogenesis and early development. Bdelloids will fly desiccated, be rehydrated on the ISS and cultivated for five generations. We present the outline of the ISS experiment, the expectations and the state-of-the-art of ground-based research run to date on the major topics of the planned experiment: anhydrobiosis and embryogenesis. Anhydrobiosis focuses on two major aspects, storage conditions that enhance recovery rate and comparison of the resistance between dormant and active rotifers to UV radiation and other environmental injuries. Embryogenesis has been approached at the morphological level under ground conditions: developing embryos have been studied by light and confocal microscopes.  相似文献   

18.
19.
20.
This study demonstrates that infective-stage larvae of 2 trichostrongyle ruminant gastrointestinal nematodes, Haemonchus contortus and Trichostrongylus colubriformis, can enter into anhydrobiotic states when completely desiccated. Larvae of control trichostrongyle species, Heligmosomoides polygyrus and Nippostrongylus brasiliensis, that infect mice were unable to survive desiccation or to enter into anhydrobiosis. Ruminant larvae were able to survive up to 7 desiccation/rehydration cycles, and, during anhydrobiosis, metabolic activity was decreased and survival of the larvae was prolonged both in the laboratory and in the field. Relative humidity had no effect on ruminant larval survival after anhydrobiosis compared with controls. Temperature had a significant effect, 85.8 +/- 2.3% of larvae in anhydrobiosis could survive low temperatures (0 C) that killed all control larvae. Metabolic activity, measured by changes in lipid content and CO2 respiration, was significantly lower in larvae that entered anhydrobiosis compared with controls (P < 0.05). In field experiments using open-meshed chambers under ambient environmental conditions, larvae in anhydrobiosis had significantly higher survival rates in the field compared with controls (P < 0.05) during summer and winter trials. These data suggest that anhydrobiosis in ruminant larvae promotes survival at freezing temperatures, decreases metabolic activity, and prolongs survival under natural field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号