首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation.  相似文献   

2.
A kinetic study of ATP hydrolysis by CF1-ATPase from chloroplasts in the presence of optimal concentrations of the stimulators, sodium sulfite and ethyl alcohol, has been carried out. At MgCl2/ATP ratios more than 1 the reaction kinetics obey the Michaelis--Menten equation. At ATP excess the kinetics are of the second order with respect to Mg2+. The data obtained are consistent with the hypothesis on the formation of an enzyme substrate Mg.CF1-MgATP complex containing beside Mg-ATP substrate Mg2+. The dependence of the maximal rate of the reaction on pH was studied. Two active groups with pK of 6.3 and 8.9 were revealed. The group responsible for Mg+2 binding to the enzyme has a pK of 8.3. The possible nature of the active groups of the enzyme is discussed.  相似文献   

3.
The elastin content of the chick thoracic aorta increases 2--3-fold during the first 3 weeks post-hatching. The deposition of elastin requires the covalent cross-linking of tropoelastin by means of lysine-derived cross-links. This process is sensitive to dietary copper intake, since copper serves as cofactor for lysyl oxidase, the enzyme that catalyses the oxidative deamination of the lysine residues involved in cross-link formation. Disruption of cross-linking alters tissue concentrations of both elastin and tropoelastin and results in a net decrease in aortic elastin content. Autoregulation of tropoelastin synthesis by changes in the pool sizes of elastin or tropoelastin has been suggested as a possible mechanism for the diminished aortic elastin content. Consequently, dietary copper deficiency was induced to study the effect of impaired elastin cross-link formation on tropoelastin synthesis. Elastin in aortae from copper-deficient chicks was only two-thirds to one-half the amount measured in copper-supplemented chicks, whereas copper-deficient concentrations of tropoelastin in aorta were at least 5-fold higher than normal. In spite of these changes, however, increased amounts of tropoelastin, copper deficiency and decreased amounts of elastin did not influence the amounts of functional elastin mRNA in aorta. Likewise, the production of tropoelastin in aorta explants was the same whether the explants were taken from copper-sufficient or -deficient birds. The lower accumulation of elastin in aorta from copper-deficient chicks appeared to be due to extracellular proteolysis, rather than to a decrease in the rate of synthesis. Electrophoresis of aorta extracts, followed by immunological detection of tropoelastin-derived products, indicated degradation products in aortae from copper-deficient birds. In extracts of aortae from copper-sufficient chicks, tropoelastin was not degraded and appeared to be incorporated into elastin without further proteolytic processing.  相似文献   

4.
We investigated transpulmonary enzymatic conversion of prostaglandin F2 alpha (PGF) to the 13,14-dihydro-15-keto metabolite (PGFM) in normal and acutely lung injured sheep. PGF was infused directly into the right ventricle. Sequential, simultaneous blood samples were drawn from the pulmonary artery (PA) and aorta (A). PGF and PGFM plasma concentrations were quantitated by double antibody radioimmunoassay (RIA). The pulmonary conversion rate of PGF in normal lung was established over a wide range of concentrations in intubated, normoxic, and hemodynamically stable sheep. Both zero and first order kinetics were present. PGF had no physiological effects on either pulmonary or systemic hemodynamics at any infusion rate studied. Acute lung injury was produced by intravenous injections of oleic acid into the PA until the resting mean pulmonary artery pressure doubled. Infusions were then repeated and fractional metabolism of PGF across the lung was assessed. PGF, at infusion rates of 2 micrograms/kg/min and 8 micrograms/kg/min, was metabolized greater than 70% respectively. Thus, there was no difference between control or experimental groups in PGF conversion. We conclude that the in vivo sheep lung has an extensive substrate-dependent capacity to metabolize PGF and this mechanism is resistant to severe acute oleic acid lung injury.  相似文献   

5.
The kinetics of sulfite adduct formation with the bound flavin in flavocytochromes c from the purple phototrophic bacterium Chromatium vinosum and the green phototrophic bacterium Chlorobium thiosulfatophilum have been investigated as a function of pH. Both species of flavocytochrome c rapidly react with sulfite to form a flavin sulfite adduct (k = 10(3)-10(5) M-1 s-1) which is bleached at 450-475 nm and has associated charge-transfer absorbance at 660 nm. The rate constant for adduct formation in flavocytochrome c is 2-4 orders of magnitude faster than for model flavins of comparable redox potential and is likely to be due to a basic residue near the N-1 position of the flavin, which not only raises the redox potential but also stabilizes the negatively charged adduct. There is a pK for adduct formation at 6.5, which suggests that the order of magnitude larger rate constant at pH 5 as compared to pH 10 in flavocytochrome c is due the influence of another positive charge, possibly a protonated histidine residue. The adduct is indefinitely stable at pH 5 but decomposes (the flavin recolors) in a first-order process accelerating above pH 6 (at pH 10, k = 0.1 s-1). The pK for recoloring is 8.5, which is suggestive of a cysteine sulfhydryl. On the basis of the observed pK and available chemical information, we believe that recoloring is due to a secondary effect of the reaction of sulfite with a protein cystine disulfide, which is adjacent to the flavin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A mechanistic study was performed to elucidate the biochemical events connected with the cocarcinogenic effect of sulfur dioxide (SO2). Glutathione S-sulfonate (GSSO3H), a competitive inhibitor of the glutathione S-transferases, forms in lung cells exposed in culture to sulfite, the hydrated form of SO2. Changes in glutathione status (total GSH) were also observed during a 1-h exposure. Some cells were pretreated with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to inhibit glutathione reductase. In human lung cells GSSO3H formed in a concentration-dependent manner, while glutathione (GSH) increased and glutathione disulfide (GSSG) decreased as the extracellular sulfite concentration was increased from 0 to 20 mM. The ratio of GSH/GSSG increased greater than 5-fold and the GSH/GSSO3H ratio decreased to 10 with increasing sulfite concentration. GSSO3H formed in rat lung cells exposed to sulfite, with no detectable effect on GSH and GSSG. GSSO3H also formed from cellular GSH mixed disulfides. GSSO3H formed rapidly, reaching its maximum value in 15 min. The viability of both cell types was unaffected except at 20 mM sulfite. GSSO3H incubated with human lung cells did not affect cellular viability. BCNU inhibited cellular GSSO3H reductase to the same extent as GSSG reductase. These results indicate that GSSO3H is formed in cells exposed to sulfite, and could be the active metabolite of sulfite responsible for the cocarcinogenic effect of SO2 by inhibiting conjugation of electrophiles by GSH.  相似文献   

7.
Resting-cell suspensions of Desulfomonile tiedjei consumed H2 with 3-chloro-, 3-bromo-, and 3-iodobenzoate as electron acceptors with rates of 0.50, 0.44, and 0.04 mumol h-1 mg-1, respectively. However, benzoate and 3-fluorobenzoate were not metabolized by this bacterium. In addition, H2 uptake was at least fourfold faster when sulfate, sulfite, or thiosulfate was available as the electron acceptor instead of a haloaromatic substrate. When sulfite and 3-chlorobenzoate were both available for this purpose, the rate of H2 uptake by D. tiedjei was intermediate between that obtained with either electron acceptor alone. Hydrogen concentrations were reduced to comparably low levels when either 3-chlorobenzoate, sulfate, or sulfite was available as an electron acceptor, but significantly less H2 depletion was evident with benzoate or nitrate. Rates of 3-chlorobenzoate dechlorination increased from an endogenous rate of 14.5 to 17.1, 74.0, 81.1, and 82.3 nmol h-1 mg-1 with acetate, pyruvate, H2, and formate, respectively, as the electron donors. Sulfite and thiosulfate inhibited dehalogenation, but sulfate and NaCl had no effect. Dehalogenation and H2 metabolism were also inhibited by acetylene, molybdate, selenate, and metronidazole. Sulfite reduction and dehalogenation were inhibited by the same respiratory inhibitors. These results suggest that the reduction of sulfite and dehalogenation may share part of the same electron transport chain. The kinetics of H2 consumption and the direct inhibition of dehalogenation by sulfite and thiosulfate in D. tiedjei cells clearly indicate that the reduction of sulfur oxyanions is favored over aryl dehalogenation for the removal of reducing equivalents under anaerobic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Resting-cell suspensions of Desulfomonile tiedjei consumed H2 with 3-chloro-, 3-bromo-, and 3-iodobenzoate as electron acceptors with rates of 0.50, 0.44, and 0.04 mumol h-1 mg-1, respectively. However, benzoate and 3-fluorobenzoate were not metabolized by this bacterium. In addition, H2 uptake was at least fourfold faster when sulfate, sulfite, or thiosulfate was available as the electron acceptor instead of a haloaromatic substrate. When sulfite and 3-chlorobenzoate were both available for this purpose, the rate of H2 uptake by D. tiedjei was intermediate between that obtained with either electron acceptor alone. Hydrogen concentrations were reduced to comparably low levels when either 3-chlorobenzoate, sulfate, or sulfite was available as an electron acceptor, but significantly less H2 depletion was evident with benzoate or nitrate. Rates of 3-chlorobenzoate dechlorination increased from an endogenous rate of 14.5 to 17.1, 74.0, 81.1, and 82.3 nmol h-1 mg-1 with acetate, pyruvate, H2, and formate, respectively, as the electron donors. Sulfite and thiosulfate inhibited dehalogenation, but sulfate and NaCl had no effect. Dehalogenation and H2 metabolism were also inhibited by acetylene, molybdate, selenate, and metronidazole. Sulfite reduction and dehalogenation were inhibited by the same respiratory inhibitors. These results suggest that the reduction of sulfite and dehalogenation may share part of the same electron transport chain. The kinetics of H2 consumption and the direct inhibition of dehalogenation by sulfite and thiosulfate in D. tiedjei cells clearly indicate that the reduction of sulfur oxyanions is favored over aryl dehalogenation for the removal of reducing equivalents under anaerobic conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Separation of the products formed from sulfate-35S by cell-free extracts of Chlorella pyrenoidosa (Emerson Strain 3) has permitted the identification of thiosulfate as a major product which yields acid-volatile radioactivity. The products formed, as separated by Dowex-1-nitrate chromatography, are qualitatively the same whether extracts at pH 7.0 (using TPNH as the reductant) or extracts at pH 9 [using 2,3-dimercaptopropan-1-ol, (BAL) as reductant] are employed. While thiosulfate can be separated without the addition of carrier, the inclusion of carrier improves the recovery. High concentrations of ATP which have been shown previously to inhibit the formation of acid-volatile radioactivity from radioactive sulfate, inhibit the formation of thiosulfate almost completely. Degradation of the thiosulfate formed at normal ATP concentrations reveals that most of the radioactivity is in the SO3-sulfur of the molecule suggesting that the SH-sulfur is derived from the enzyme extracts. If carrier sulfite is present during thiosulfate formation from sulfate-35S, radioactive sulfite is recovered at the expense of radioactive thiosulfate. Reconstruction experiments utilizing specifically-labeled thiosulfates indicate that radioactive sulfite formation is probably not the result of trapping a normal intermediate, but can be attributed to non-enzymatic exchange between labeled thiosulfate formed from sulfate and the non-radioactive sulfite added, suggesting that free sulfite is not an intermediate in thiosulfate formation from sulfate.  相似文献   

10.
After exposing intact chloroplasts isolated from spinach (Spinacia oleracea L. cv Yates) and capable of photoreducing CO2 at high rates to different concentrations of radioactive sulfite in the light or in the dark, 35SO2 and H235S were removed from the acidified suspensions in a stream of nitrogen. Remaining activity could be fractionated into sulfate, organic sulfides, and sulfite addition compounds. When chloroplast suspensions contained catalase, superoxide dismutase and O-acetylserine, the oxidation of sulfite to sulfate was slower in the light than the reductive formation of sulfides that exhibited a maximum rate of about 2 micromoles per milligram chlorophyll per hour, equivalent to about 1% of maximum carbon assimilation. Botht the oxidative and the reductive detoxification of sulfite were very slow in the dark. Oxidation was somewhat, but not much, accelerated in the light in the absence of O-acetylserine, which caused a dramatic decrease in the formation of organic sulfides and an equally dramatic increase in the concentration of sulfite addition compounds whose formation was light-dependent. The sulfite addition compounds were not identified. Addition compounds did not accumulate in the dark. In the light, the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, decreased not only the reduction, but also the oxidation of sulfite and the formation of addition compounds.  相似文献   

11.
Lipid oxidation in LDL may play a role in atherogenesis. It has been shown that sulfite - a compound in the aqueous fraction of wine - could inhibit free radical (AAPH) mediated oxidation of plasma. Thus, sulfite has been proposed as an antioxidant. In contrast, the aqueous phase of wine has recently been shown to contain not fully identified compounds promoting transition metal ion (Cu(2+)) initiated LDL oxidation. As transition metal ions can catalyse the auto-oxidation of sulfite, we studied the influence of sulfite on Cu(2+) initiated LDL oxidation. The results show that sulfite at concentrations found in vivo strongly facilitated LDL oxidation by Cu(2+). The LDL-oxidase activity of ceruloplasmin was also stimulated by sulfite. ROS formation by Cu(2+)/SO(3)(2-) was not inhibited by SOD but by catalase. We propose that formation of Cu(+), sulfite radicals (SO(3)*(-)) and hydroxyl radicals (OH(*)) is a mechanism by which sulfite could act as a pro-atherogenic agent in presence of transition metal ions.  相似文献   

12.
《Free radical research》2013,47(4-6):285-288
The sulfite radical anion (SO3?) is the first intermediate in the autoxidation of sulfite to sulfate. Using competition kinetics, its reactivities with the nucleic acid bases and the corresponding nucleosides were investigated. The second order rate constants were found to be rather low, k < 1 × 106dm3mol?1s?1 at pH 7. As a competitor, the carotenoid crocin was used, which was found to be bleached very efficiently by SO3? (k = 1.0 × 109dm3mol?1S?1).  相似文献   

13.
The formation of gel particles from alginate and ι-carrageenan was studied through a novel pathway of formation via an amorphous spray-dried intermediate. Dried biopolymer particles were suspended in solutions of different Ca2+ concentration. Particle size ranges and microscopic observation demonstrated that a range of swelling behaviour could be induced, with lower calcium concentrations resulting in more expanded particles, until a lower limit is reached below which particles initially dissolve. For the same calcium charge stoichiometry, larger swollen gel particles were obtained for alginate than for ι-carrageenan. The ability to produce a range of swollen biopolymer gel particle sizes, on the order of 1–600 μm, is attributed to the balance between gelation and dissolution kinetics, with fast gelation kinetics and slow dissolution promoting production of small gel particles whilst fast dissolution with slow gelation leads to larger gel particles. By controlling the solution environment in which rehydration is carried out, it is therefore possible to produce particles with desired degrees of swelling from a single starting material.  相似文献   

14.
Ethane formation, as a measure of lipid peroxidation, was studied in spinach (Spinacia oleracea L.) chloroplasts exposed to sulfite. Ethane formation required sulfite and light, and occurred with concomitant oxidation of sulfite to sulfate. In the dark, both ethane formation and sulfite oxidation were inhibited. Ethane formation was stimulated by ferric or ferrous ions and inhibited by ethylenediamine tetraacetate. The photosynthetic electron transport modulators, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and phenazine methosulfate, inhibited both sulfite oxidation and ethane formation. Methyl viologen greatly stimulated ethane formation, but had little effect on sulfite oxidation. Methyl viologen, in the absence of sulfite, caused only a small amount of ethane formation in comparison to that produced with sulfite alone. Sulfite oxidation and ethane formation were effectively inhibited by the radical scavengers, 1,2-dihydroxybenzene-3,5-disulfonic acid and ascorbate. Ethanol, a hydroxyl radical scavenger, inhibited ethane formation only to a small degree; formate, which converts hydroxyl radical to superoxide radical, caused a small stimulation in both sulfite oxidation and ethane formation. Superoxide dismutase inhibited ethane formation by 50% when added at a concentration equivalent to that of the endogenous activity. Singlet oxygen did not appear to play a role in ethane formation, inasmuch as the singlet oxygen scavengers, sodium azide and 1,4-diazobicyclo-[2,2,2]-octane, were not inhibitory. These data are consistent with the view that O2 is reduced by the photosynthetic electron transport system to superoxide anion, which in turn initiates the free radical oxidation of sulfite, and the free radicals produced during sulfite oxidation were responsible for the peroxidation of membrane lipids, resulting in the formation of ethane.  相似文献   

15.
1. Data are provided that indicate that the rat brain acetoacetyl-CoA deacylase is almost exclusively mitochondrial. Developmental studies show that this enzyme more than doubles its activity during suckling (0--21 days) and then maintains this activity in adults (approx. 1.1 units/g wet wt.). 2. Kinetic studies (on the acetoacetyl-CoA deacylase) in a purified brain mitochondrial preparation give a Vmax. of 47 nmol/min per mg of protein, and a Km for acetoacetyl-CoA of 5.2 micron and are compatible with substrate inhibition by acetoacetyl-CoA above concentrations of 47 micron. 3. The total brain 3-hydroxy-3-methyl-glutaryl-CoA synthase remains constant in the developing and adult rat brain (approx. 1.2 units/g wet wt.). This enzyme is located in both the mitochondrial and cytosolic fractions. During suckling (0--21 days) the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase represents approx. one-third of the total, but this increases markedly to about 60% of the total in the adult. The cytosolic enzyme correspondingly falls to approx. 40% of the total. 4. The role of the acetoacetyl-CoA deacylase in providing cytosolic acetoacetate for biosynthetic activities in the developing brain is discussed.  相似文献   

16.
The erythroid cells from the rat fetal liver have been shown to possess a receptor for glucocorticoids. In the present work, the characteristics of [3H]dexamethasone binding have been studied on intact cells, in order to minimize receptor degradation, and at 4 degrees C, in order to prevent the activation of the hormone-receptor complex. Dissociation kinetics were those of a first-order reaction and the value of the rate constant of dissociation was similar to the values available in the literature. When studied at low concentrations of the ligand and using short-term incubations, association kinetics were apparently those of a simple bimolecular reaction. But at high ligand concentrations and/or using long-term incubations, association kinetics indicated a more complex reaction. Our results were compatible with the model proposed by Pratt W.B., Kaine J.L. and Pratt V.D. (J. Biol. Chem. 250 (1975) 4584-4591) for cytosolic preparations. This model implies the rapid formation of a transient unstable form of the complex, further converted into a stable form with slower kinetics. Equilibrium dissociation constant of the first (rapid) reaction was 80 microM and the rate constant of 'stabilization' was of the order of 70 X 10(-3) min-1. These values agree with the results of Pratt et al. relative to a cytosolic preparation from rat thymocytes.  相似文献   

17.
A pulsed feeding technique was used during studies of sulfite reduction by Salmonella heidelberg in order to realize large percentages of SO3= conversion while simultaneously maintaining a reasonably stable cell population. As a consequence, much data for conventional kinetic and sulfur isotope fractionation computations were obtained in any one experiment. Under the conditions of supplying 150 μg glucose per ml of medium every 6 hr, anaerobiosis, and varying the SO3= concentration, the following observations were made: 1. Below 0.01% w/v Na2SO3, the reduction strictly followed first order kinetics with respect to SO3= concentration. At higher concentrations, the rate of SO3= reduction fell below that predicted by first order kinetics suggesting that a saturation effect was occurring. 2. At lower concentrations, the ratio of the isotopic rate constants k1/k2 was 1.02 whereas at higher SO3= levels, k1/k2 values of 1.04 were found. These latter effects are much higher than those obtained in the equivalent chemical reduction. On the basis of these observations, a model is considered which features two isotopically dependent steps and an intermediate reservoir which forms at higher SO3= concentrations. Results of an experiment under aerobic conditions and an experiment wherein the reduction rate was thermally altered, are also presented.  相似文献   

18.
The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5 h initial burst release, fast release of B from scaffolds was observed for 24 h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.  相似文献   

19.
1. The first dehydrogenation step of peroxisomal beta-oxidation involves the reduction of O2 to H2O2. Production rates of H2O2 and acetyl units by purified rat liver peroxisomes oxidizing palmitoyl-CoA were equal, indicating that H2O2 production is a reliable index for the release of acetyl units during peroxisomal fatty-acid oxidation. 2. Measurements of H2O2 and acid-soluble oxidation products during [1-14C]palmitoyl-CoA oxidation by purified peroxisomes revealed that the number of acetyl units released per molecule of palmitoyl-CoA oxidized rapidly decreased with increasing unbound palmitoyl-CoA concentrations. Structural damage to the peroxisomes caused by detergents or other treatments also decreased the number of acetyl units released. Under conditions where oxidation proceeded linearly with time the theoretical maximum of 5 acetyl units released per molecule of palmitoyl-CoA oxidized [Lazarow (1978) J. Biol. Chem. 253, 1522--1528] was never reached. 3. Expressed in terms of acetyl units produced and measured at low unbound-palmitoyl-CoA concentrations, mitochondrial oxidation was 10--20-fold higher than peroxisomal oxidation. 4. ATP stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold. The ATP effect required the presence of Mg2+ and was lost when peroxisomal membranes were disrupted by Triton X-100 or high concentrations of unbound palmitoyl-CoA. 5. Disruption of peroxisomes by detergents, freeze--thawing, osmotic or mechanical treatment did not stimulate palmitoyl-CoA oxidation in the presence of ATP, indicating that peroxisomal fatty-acid-CoA oxidation was not latent. In the absence of ATP, Triton X-100 stimulated peroxisomal palmitoyl-CoA oxidation approx. 2-fold.  相似文献   

20.
The 9,10-mono-ozonide of methyl linoleate was shown to be a substrate for rat hepatic cytosolic, rat lung cytosolic and rat hepatic microsomal glutathione S-transferases (GST). The activities of lung cytosol and liver microsomes with methyl linoleate ozonide (MLO) were found to be high relative to the activity demonstrated by liver cytosol, as compared with their respective activities towards 1-chloro-2,4-dinitrobenzene (CDNB). Only a slight catalytic activity towards the ozonide was noticed for rat lung microsomes. Isoenzyme 2-2 exhibited the highest specific activity (208 nmol/min/mg) when isoenzymes 1-1, 1-2, 2-2, 3-3, 3-4, 4-4 and 7-7 were compared. This isoenzyme accounts for approx. 25% of cytosolic GST protein in rat lung, while in rat liver it represents approx. 9%. This may partly explain the high activity towards the ozonide noticed for rat lung cytosol. No stable conjugates were formed as products of the reaction of MLO with glutathione; although two glutathione-conjugates were noticed on TLC, they were only formed as intermediate compounds. Coupling of an aldehyde dehydrogenase assay or a glutathione reductase assay to the GST-catalyzed conjugation, demonstrated that oxidized glutathione and aldehydes are formed as the major products in the reaction. To further confirm the formation of aldehydes, the products of the GST-catalyzed reaction were incubated with 2,4-dinitrophenylhydrazine, which resulted in hydrazone formation. In conclusion, the activity of the GST towards the ozonide of methyl linoleate is similar to their peroxidase activity with lipid hydroperoxides as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号