首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Khan SH  Ahmad N  Ahmad F  Kumar R 《IUBMB life》2010,62(12):891-895
Osmolytes are naturally occurring organic compounds, which represent different chemical classes including amino acids, methylamines, and polyols. By accumulating high concentrations of osmolytes, organisms adapt to perturbations that can cause structural changes in their cellular proteins. Osmolytes shift equilibrium toward natively-folded conformations by raising the free energy of the unfolded state. As osmolytes predominantly affect the protein backbone, the balance between osmolyte-backbone interactions and amino acid side chain-solvent interactions determines protein folding. Abnormal cell volume regulation significantly contributes to the pathophysiology of several disorders, and cells respond to these changes by importing, exporting, or synthesizing osmolytes to maintain volume homeostasis. In recent years, it has become quite evident that cells regulate many biological processes such as protein folding, protein disaggregation, and protein-protein interactions via accumulation of specific osmolytes. Many genetic diseases are attributed to the problems associated with protein misfolding/aggregation, and it has been shown that certain osmolytes can protect these proteins from misfolding. Thus, osmolytes can be utilized as therapeutic targets for such diseases. In this review article, we discuss the role of naturally occurring osmolytes in protein stability, underlying mechanisms, and their potential use as therapeutic molecules.  相似文献   

2.
Intracellular organic osmolytes are present in certain organisms adapted to harsh environments and these osmolytes protect intracellular macromolecules against the denaturing environmental stress. In natural selection of organic osmolytes as protein stabilizers, it appears that the osmolyte property selected for is the unfavorable interaction between the osmolyte and the peptide backbone, a solvophobic thermodynamic force that we call the osmophobic effect. Because the peptide backbone is highly exposed to osmolyte in the denatured state, the osmophobic effect preferentially raises the free energy of the denatured state, shifting the equilibrium in favor of the native state. By focusing the solvophobic force on the denatured state, the native state is left free to function relatively unfettered by the presence of osmolyte. The osmophobic effect is a newly uncovered thermodynamic force in nature that complements the well-recognized hydrophobic interactions, hydrogen bonding, electrostatic and dispersion forces that drive protein folding. In organisms whose survival depends on the intracellular presence of osmolytes that can counteract denaturing stresses, the osmophobic effect is as fundamental to protein folding as these well-recognized forces.  相似文献   

3.
Mukaiyama A  Koga Y  Takano K  Kanaya S 《Proteins》2008,71(1):110-118
Proteins are known to be stabilized by naturally occurring osmolytes such as amino acids, sugars, and methylamines. Here, we examine the effect of trimethylamine-N-oxide (TMAO) on the conformational stability of ribonuclease HII from a hyperthermophile, Thermococcus kodakaraensis (Tk-RNase HII), which inherently possesses high conformational stability. Heat- and guanidine hydrochloride-induced unfolding experiments demonstrated that the conformational stability of Tk-RNase HII in the presence of 0.5M TMAO was higher than that in the absence of TMAO at all examined temperatures. TMAO affected the unfolding and refolding kinetics of Tk-RNase HII to a similar extent. These results indicate that proteins are universally stabilized by osmolytes, regardless of their robustness, and suggest a stabilization mechanism by osmolytes, caused by the unfavorable interaction of osmolytes with protein backbones in the denatured state. Our results also imply that the basic protein folding principle is not dependent on protein stability and evolution.  相似文献   

4.
Intracellular organic osmolytes are present in certain organisms adapted to harsh environments. These osmolytes protect intracellular macromolecules against denaturing environmental stress. In contrast to the usually benign effects of most organic osmolytes, the waste product urea is a well-known perturbant of macromolecules. Although urea is a perturbing solute which inhibits enzyme activity and stability, it is employed by some species as a major osmolyte. The answer to this paradox was believed to be the discovery of protective osmolytes (methylamines). We review the current state of knowledge on the various ways of counteracting the harmful effects of urea in nature and the mechanisms for this. This review ends with the mechanistic idea that cellular salt (KCl/NaCl) plays a crucial role in counteracting the effects of urea, either by inducing required chaperones or methylamines, or by thermodynamic interactions with urea-destabilised proteins. We also propose future opportunities and challenges in the field.  相似文献   

5.
Protein and DNA destabilization by osmolytes: the other side of the coin   总被引:1,自引:0,他引:1  
Singh LR  Poddar NK  Dar TA  Kumar R  Ahmad F 《Life sciences》2011,88(3-4):117-125
Osmolytes are naturally occurring small molecules accumulated intracellularly to protect organisms from various denaturing stresses. Similar to the two faces of a coin, several of these osmolytes are stabilizing and destabilizing proteins depending on the concentrations and/or solvent conditions. For example, the well known stabilizing osmolyte, trehalose destabilizes some proteins at high concentration and/or high pH. In spite of the fact that destabilizing aspects of osmolytes can modulate many cellular processes including regulation of protein homeostasis (proteostasis), protein-protein interaction, and protein-DNA interaction, researchers have mostly focused on the stabilizing aspects of osmolytes. Thus, it is important to look into both aspects of osmolytes to determine their precise role under physiological conditions. In this article, we have discussed both stabilizing and destabilizing/denaturant aspects of osmolytes to uncover both sides of the coin.  相似文献   

6.
Osmolytes that are naturally selected to protect organisms against environmental stresses are known to confer stability to proteins via preferential exclusion from protein surfaces. Solvophobicity, surface tension, excluded volume, water structure changes and electrostatic repulsion are all examples of forces proposed to account for preferential exclusion and the ramifications exclusion has on protein properties. What has been lacking is a systematic way of determining which force(s) is(are) responsible for osmolyte effects. Here, we propose the use of two experimental metrics for assessing the abilities of various proposed forces to account for osmolyte-mediated effects on protein properties. Metric 1 requires prediction of the experimentally determined ability of the osmolyte to bring about folding/unfolding resulting from the application of the force in question (i.e. prediction of the m-value of the protein in osmolyte). Metric 2 requires prediction of the experimentally determined ability of the osmolyte to contract or expand the Stokes radius of the denatured state resulting from the application of the force. These metrics are applied to test separate claims that solvophobicity/solvophilicity and surface tension are driving forces for osmolyte-induced effects on protein stability. The results show clearly that solvophobic/solvophilic forces readily account for protein stability and denatured state dimensional effects, while surface tension alone fails to do so. The agreement between experimental and predicted m-values involves both positive and negative m-values for three different proteins, and as many as six different osmolytes, illustrating that the tests are robust and discriminating. The ability of the two metrics to distinguish which forces account for the effects of osmolytes on protein properties and which do not, provides a powerful means of investigating the origins of osmolyte-protein effects.  相似文献   

7.
Jacak R  Leaver-Fay A  Kuhlman B 《Proteins》2012,80(3):825-838
De novo protein design requires the identification of amino-acid sequences that favor the target-folded conformation and are soluble in water. One strategy for promoting solubility is to disallow hydrophobic residues on the protein surface during design. However, naturally occurring proteins often have hydrophobic amino acids on their surface that contribute to protein stability via the partial burial of hydrophobic surface area or play a key role in the formation of protein-protein interactions. A less restrictive approach for surface design that is used by the modeling program Rosetta is to parameterize the energy function so that the number of hydrophobic amino acids designed on the protein surface is similar to what is observed in naturally occurring monomeric proteins. Previous studies with Rosetta have shown that this limits surface hydrophobics to the naturally occurring frequency (~28%), but that it does not prevent the formation of hydrophobic patches that are considerably larger than those observed in naturally occurring proteins. Here, we describe a new score term that explicitly detects and penalizes the formation of hydrophobic patches during computational protein design. With the new term, we are able to design protein surfaces that include hydrophobic amino acids at naturally occurring frequencies, but do not have large hydrophobic patches. By adjusting the strength of the new score term, the emphasis of surface redesigns can be switched between maintaining solubility and maximizing folding free energy.  相似文献   

8.
Polycystin-1 (PC1) is a large membrane protein that is expressed along the renal tubule and exposed to a wide range of concentrations of urea. Urea is known as a common denaturing osmolyte that affects protein function by destabilizing their structure. However, it is known that the native conformation of proteins can be stabilized by protecting osmolytes that are found in the mammalian kidney. PC1 has an unusually long ectodomain with a multimodular structure including 16 Ig-like polycystic kidney disease (PKD) domains. Here, we used single-molecule force spectroscopy to study directly the effects of several naturally occurring osmolytes on the mechanical properties of PKD domains. This experimental approach more closely mimics the conditions found in vivo. We show that upon increasing the concentration of urea there is a remarkable decrease in the mechanical stability of human PKD domains. We found that protecting osmolytes such as sorbitol and trimethylamine N-oxide can counteract the denaturing effect of urea. Moreover, we found that the refolding rate of a structurally homologous archaeal PKD domain is significantly slowed down in urea, and this effect was counteracted by sorbitol. Our results demonstrate that naturally occurring osmolytes can have profound effects on the mechanical unfolding and refolding pathways of PKD domains. Based on these findings, we hypothesize that osmolytes such as urea or sorbitol may modulate PC1 mechanical properties and may lead to changes in the activation of the associated polycystin-2 channel or other intracellular events mediated by PC1.  相似文献   

9.
Protein solvation is the key determinant for isothermal, concentration-dependent effects on protein equilibria, such as folding. The required solvation information can be extracted from experimental thermodynamic data using Kirkwood-Buff theory. Here we derive and discuss general properties of proteins and osmolytes that are pertinent to their biochemical behavior. We find that hydration depends very little on osmolyte concentration and type. Strong dependencies on both osmolyte concentration and type are found for osmolyte self-solvation and protein-osmolyte solvation changes upon unfolding. However, solvation in osmolyte solutions does not involve complex concentration dependencies as found in organic molecules that are not used as osmolytes in nature. It is argued that the simple solvation behavior of naturally occurring osmolytes is a prerequisite for their usefulness in osmotic regulation in vivo.  相似文献   

10.
A number of naturally occurring small organic molecules, primarily involved in maintaining osmotic pressure in the cell, display chaperone-like activity, stabilizing the native conformation of proteins, and protecting them from various kinds of stress. Most of them are sugars, polyols, amino acids or methylamines. Similar to molecular chaperones, most of these compounds have no substrate specificity, but some specifically stabilize certain proteins. In the present work, the capacity of trehalose and glycerol, two well-known osmolytes, to stabilize and renature inorganic pyrophosphatase is demonstrated. Both trehalose and glycerol significantly protect pyrophosphatase against thermoinactivation achieved by incubating the enzyme at temperatures up to 95 degrees C, and allow the enzyme already inactivated in the presence of these osmolytes to renature upon incubation at low temperatures. To the best of our knowledge, there are no data on the effects of these compounds on renaturation of thermoinactivated proteins. The correlation between the recovery of enzyme activity and structural changes indicated by fluorescence spectroscopy contribute to better understanding of the protein stabilization mechanism.  相似文献   

11.
The ability of several naturally occurring substances known as osmolytes to induce helix formation in an alanine-based peptide have been investigated. As predicted by the osmophobic effect hypothesis, the osmolytes studies here do induce helix formation. Trimethylamine-N-oxide (TMAO) is the best structure-inducing osmolytes investigated here, but it is not as effective in promoting helix formation as the common cosolvent trifluoroethanol (TFE). We also provide a semiquantitative study of the ability of TMAO to induce helix formation and urea, which acts as a helix (and protein) denaturant. We find that on a molar basis, these agents are exactly counteractive as structure inducing and unfolding agents. Finally, we extend the investigations to the effects of urea and TMAO on the stability of a dimeric coiled-coil peptide and find identical results. Together these results support the tenets of the osmophobic hypothesis and highlight the importance of the polypeptide backbone in protein folding and stability.  相似文献   

12.
Recent advances in computational protein design have allowed exciting new insights into the sequence dependence of protein folding free energy landscapes. Whereas most previous studies have examined the sequence dependence of protein stability and folding kinetics by characterizing naturally occurring proteins and variants of these proteins that contain a small number of mutations, it is now possible to generate and characterize computationally designed proteins that differ significantly from naturally occurring proteins in sequence and/or structure. These computer-generated proteins provide insights into the determinants of protein structure, stability and folding, and make it possible to disentangle the properties of proteins that are the consequence of natural selection from those that reflect the fundamental physical chemistry of polypeptide chains.  相似文献   

13.
Feng S  Yan YB 《Proteins》2008,71(2):844-854
All organisms have developed detect, repair, regulation, and stabilization mechanisms to survive from cellular and molecular damage induced by diverse stresses. Among them, the accumulation of osmolytes is a common mechanism evolved by cells to maintain cell volume and stabilize macromolecules against various environmental stresses. The molecular mechanisms by which osmolytes stabilize proteins and prevent aggregation have been well-established. However, little is known about the effects of osmolytes on mutated or damaged proteins. In this research, we investigated the effects of glycerol on the activity, structure, and stability of the wild type (WT) and D54G CK under normal and extreme (high temperature) conditions. It was found that glycerol had similar effects on the suppression of the aggregation during the refolding of both proteins. Under native conditions, the effect of glycerol on the mutated protein was more obvious than on the WT protein. Glycerol could efficiently force the mutated protein to fold to a state close to the WT protein, and thus stabilize the native state of the mutated protein. Glycerol could also protect both the WT and mutated proteins against heat-induced denaturation. However, the change in the transition free energy of heat-induced inactivation of the WT protein was larger than that of the mutated protein. These results suggested that glycerol might have differential effects on the changes of the chemical potential and the transition free energy of the WT and mutated proteins.  相似文献   

14.
The influence of the naturally occurring osmolytes xylitol, glycine and betaine on the thermal stability of human haemoglobin was investigated. Experiments were made in the temperature range of 55–70 °C, adding up to 30% w/w of osmolytes to the protein solution. All the additives stabilized haemoglobin, with xylitol and glycine appearing more effective. A kinetic analysis based on the Lumry–Eyring inactivation scheme showed that the denaturation process can be described by a second-order rate expression, with an apparent activation energy ranging from 45 to 82 kcal/mol.  相似文献   

15.
NMR structures of recombinant prion proteins from various species expressed in Escherichia coli have been solved during the past years, but the fundamental question of the relevancy of these data relative to the naturally occurring forms of the prion protein has not been directly addressed. Here, we present a comparison of the cellular form of the bovine prion protein isolated and purified from healthy calf brains without use of detergents, so that it contains the two carbohydrate moieties and the part of the GPI anchor that is maintained after enzymatic cleavage of the glycerolipid moiety, with the recombinant bovine prion protein expressed in E. coli. We show by circular dichroism and (1)H-NMR spectroscopy that the three-dimensional structure and the thermal stability of the natural glycoprotein and the recombinant polypeptide are essentially identical. This result indicates possible functional roles of the glycosylation of prion proteins in healthy organisms, and provides a platform and validation for future work on the structural biology of prion proteins, which will have to rely primarily on the use of recombinant polypeptides.  相似文献   

16.
Stanley C  Rau DC 《Biochemistry》2008,47(25):6711-6718
The interaction of urea and several naturally occurring protein-stabilizing osmolytes, glycerol, sorbitol, glycine betaine, trimethylamine oxide (TMAO), and proline, with condensed arrays of a hydrophobically modified polysaccharide, hydroxypropylcellulose (HPC), has been inferred from the effect of these solutes on the forces acting between HPC polymers. Urea interacts only very weakly. The protein-stabilizing osmolytes are strongly excluded. The observed energies indicate that the exclusion of the protein-stabilizing osmolytes from protein hydrophobic side chains would add significantly to protein stability. The temperature dependence of exclusion indicates a significant contribution of enthalpy to the interaction energy in contrast to expectations from "molecular crowding" theories based on steric repulsion. The dependence of exclusion on the distance between HPC polymers rather indicates that perturbations of water structuring or hydration forces underlie exclusion.  相似文献   

17.
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.  相似文献   

18.
Osmolytes are molecules whose function, among others, is to balance the hydrostatic pressure between the intracellular and extracellular compartments. Accumulation of osmolytes in a cell occurs in response to stress caused by changes in pressure, temperature, pH, or the concentration of inorganic salts. Osmolytes can prevent the denaturation of native proteins and promote the renaturation of unfolded proteins. Investigation of the roles of osmolyte in these processes is essential for our understanding of the mechanisms of protein folding and function in vivo. The large number of published reports that have been devoted to the effects of osmolytes on proteins are not always consistent with each other. In this review, an attempt is made to systemize the array of data on this subject and to consider the problem of protein folding and stability in osmolyte solutions from a single viewpoint.  相似文献   

19.
Given that enzymes in urea-rich cells are believed to be just as sensitive to urea effects as enzymes in non-urea-rich cells, it is argued that time-dependent inactivation of enzymes by urea could become a factor of overriding importance in the biology of urea-rich cells. Time-independent parameters (e.g. Tm, k(cat), and Km) involving protein stability and enzyme function have generally been the focus of inquiries into the efficacy of naturally occurring osmolytes like trimethylamine-N-oxide (TMAO), to offset the deleterious effects of urea on the intracellular proteins in the urea-rich cells of elasmobranchs. However, using urea concentrations found in urea-rich cells of elasmobranches, we have found time-dependent effects on lactate dehydrogenase activity which indicate that TMAO plays the important biological role of slowing urea-induced dissociation of multimeric intracellular proteins. TMAO greatly diminishes the rate of lactate dehydrogenase dissociation and affords significant protection of the enzyme against urea-induced time-dependent inactivation. The effects of TMAO on enzyme inactivation by urea adds a temporal dimension that is an important part of the biology of the adaptation paradigm.  相似文献   

20.
Active protein-disaggregation by a chaperone network composed of ClpB and DnaK + DnaJ + GrpE is essential for the recovery of stress-induced protein aggregates in vitro and in Escherichia coli cells. K-glutamate and glycine-betaine (betaine) naturally accumulate in salt-stressed cells. In addition to providing thermo-protection to native proteins, we found that these osmolytes can strongly and specifically activate ClpB, resulting in an increased efficiency of chaperone-mediated protein disaggregation. Moreover, factors that inhibited the chaperone network by impairing the stability of the ClpB oligomer, such as natural polyamines, dilution, or high salt, were efficiently counteracted by K-glutamate or betaine. The combined protective, counter-negative and net activatory effects of K-glutamate and betaine, allowed protein disaggregation and refolding under heat-shock temperatures that otherwise cause protein aggregation in vitro and in the cell. Mesophilic organisms may thus benefit from a thermotolerant osmolyte-activated chaperone mechanism that can actively rescue protein aggregates, correctly refold and maintain them in a native state under heat-shock conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号