首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduced fish reduce the abundance and diversity of native aquatic fauna, but the effect can be reduced in complex habitats. We manipulated fish populations in forested mountain lakes to determine whether or not fish affected benthic macroinvertebrate composition across lakes with differing habitat complexity. We compared abundance, biomass, body-length, and community structure of benthic macroinvertebrates from 16 lakes with three treatments (fish stocked, suspended stocking, fish removed) and unstocked fishless “controls”. Over 4 years, we assessed the relative importance of fish and environmental variables influencing the composition of benthic macroinvertebrates. Control lakes had the greatest overall abundance of macroinvertebrates when chironomid midges were excluded. Abundances of insects in the clinger/swimmer functional group and caddisflies were greatest in the control lakes but were primarily influenced by habitat variables including the availability of aquatic vegetation and wood. Total biomass and mean body length of macroinvertebrates were not affected by treatment. Taxon richness of macroinvertebrates was about 40% greater in the control lakes compared to the treatment lakes but did not differ among treatments. Our results suggest that fish reduce susceptible macroinvertebrate richness and abundances, but that changes associated with alterations of fish composition are confounded by other factors in complex lake habitats.  相似文献   

2.
Infection patterns of trophically transmitted helminth parasites were compared with feeding ecology in two sympatric whitefish Coregonus lavaretus morphs from two lake systems in northern Norway. In both lakes, the pelagic morph was an obligate zooplanktivore, while the benthic morph utilized both the benthivore and zooplanktivore trophic niches. The differences in niche utilization between the two morphs were associated with differences in trophic morphology (gill raker numbers), suggesting that they were genetically dissimilar and reproductively isolated. The benthic morph had the highest number of helminth species, probably because they exhibited a broader niche width compared to the pelagic morph. In both lakes, the species composition and intensities of helminths reflected the trophic diversification of the whitefish ecotypes with respect to different habitat choice (benthic v . pelagic) and dietary specialization (benthivore v . zooplanktivore feeding strategies within the benthic whitefish morph). Zooplanktivorous fish from both morphs acquired parasites mainly from pelagic copepods and in almost equal quantities. The benthivore feeders within the benthic morph had the highest proportion of parasites with transmission stages from benthic organisms. Host feeding behaviour seemed to be a major determinant of the helminth community structure, and helminths appeared to be useful indicators of long-term trophic specialization of whitefish ecotypes.  相似文献   

3.
European eels Anguilla anguilla from freshwater lakes in Lithuania had slower growth rates and lower backcalculated total lengths ( L T) than those from lagoons and coastal waters, but no significant differences were found among fish with different migratory histories or between naturally recruited and stocked fish except a higher L T at age of stocked European eels at ages 5 to 8 years. The asymptotic L T did not differ among habitats or migratory histories, but the stocked eels in the lakes had smaller K (coefficient from the von Bertalanffy growth function) than did the both naturally recruited and stocked eels in the lagoon and coastal waters. The growth rate of European eels in Lithuania might be influenced mainly by different habitats rather than different migratory histories and stocking. The lower L T at age of naturally recruited fish at ages 5–8 years compared to stocked fish might result from the extra energy costs entailed in migration from the Atlantic and across the Baltic Sea.  相似文献   

4.
The presence of two phenotypes in a single species is a widespread phenomenon, also observed in European eel (Anguilla anguilla). This dimorphism has been related to dietary differences in the subadult elver and yellow eel stages, with broad‐heads generally feeding on harder and/or larger‐bodied prey items than narrow‐heads. Nevertheless, both broad‐ and narrow‐headed phenotypes can already be found among glass eels, the stage preceding the elver eel stage. As these glass eels are considered nonfeeding, we investigate here to what degree the observed variation in head width is reflected in variation in the musculoskeletal feeding system, as well as whether this reflects the same variation observed in the older, dimorphic yellow eels. Additionally, we investigate whether musculoskeletal differences between broad‐ and narrow‐headed glass eels have implications on their feeding performance and could thus impact prey preference when eels start feeding. Therefore, we compared the cranial musculoskeletal system of five broad‐ and narrow‐headed glass eels using 3D‐reconstructions and simulated the glass eel's bite force using the data of the muscle reconstructions. We found that the variation in the musculoskeletal system of glass eels indeed reflects that of the yellow eels. Broader heads were related to larger jaw muscles, responsible for mouth closure. Accordingly, broad‐heads could generate higher bite forces than narrow‐headed glass eels. In addition, broader heads were associated with higher coronoid processes and shorter hyomandibulae, beneficial for dealing with higher mechanical loadings and consequently, harder prey. We, thus, show that head width variation in glass eels is related to musculoskeletal differences which, in turn, can affect feeding performance. As such, differences in prey preference can already take place the moment the eels start feeding, potentially leading to the dimorphism observed in the elver and yellow eel stage.  相似文献   

5.
Stomach contents of pollan caught monthly throughout the year were examined. Stomach fullness was significantly correlated with water temperature. Adult pollan fed on bottom fauna, mainly chironomid larvae, in October-March, chironomid pupae in April and on Daphnia spp. in May-September. Immature (0+ and 1 +) fish also ate other cladocerans and copepods. While there is no evidence for selection of any benthic prey species, adult pollan appear to be highly selective feeders on Daphnia spp. in summer.  相似文献   

6.
Understanding trophic relationships of fish in estuarine ecosystem is an important element for sustainable resource management. This study examined the feeding habits of 29 dominant fish species, characterized the trophic guilds, assessed the impact of season and clarified the role of diets in structuring the fish community in the mouth region of Pattani Bay, Thailand. Samples of 5792 fishes collected monthly by gillnets from March 2019 to February 2020 were used for stomach content analyses. It was found that the number of food types and fullness index differed between fish taxa (P < 0.001). Most fishes were specialist feeders feeding on specific food components and were categorized into five trophic guilds: piscivore, shrimp-fish feeder, polychaete feeder, zooplanktivore and planktivore. Six species were piscivorous, considered as apex predators, that fed almost entirely on fishes. High diet overlaps among some species (>0.6) were recorded. Not much variation in seasonal guilds was observed: four guilds in the dry season, three in the moderate rainy season and four in the rainy season. Some species remained in the same guild the whole year round, but some fishes changed seasonally. Two fish communities from different regions of the bay were segregated based on feeding habits. The inner bay community comprised mainly copepod and plankton feeders, but there were more piscivores in the deeper bay mouth area. Results from this study help us to understand the feeding habits and trophic guilds of dominant fish species at the mouth of this tropical estuarine bay.  相似文献   

7.
The material comprised 1205 arctic charr caught by gillnets and electrofishing in the ice-free season 1982 in four interconnected lakes. The lakes were similar in biotic and abiotic factors and the arctic charr populations were therefore treated as one population. Two size groups of fish older than three years, called 'small charr' and 'large charr', were found. The two groups differed in feeding habits, growth rates, age of maturity and spawning frequencies. However, they did not differ in the frequencies of the F- and S- serum esterase alleles, and were in accord with the model proposed by Johnson (1976) which states that the 'small charr' and 'large charr' are two different forms of the same population. 'Small charr' recruit to the 'large charr' by entering a period of fast growth. In the investigated lakes this occurred when the 'small charr' were 3–10 years old. Some indications of rematuration of the 'small charr' when entering the group of 'large charr' were found.  相似文献   

8.
饥饿是影响鱼类仔鱼早期存活的关键因素,入侵鱼类仔鱼耐饥饿能力对其种群增长与扩散意义重大。本文对滇池流域食蚊鱼Gambusia affinis奠基种群仔幼鱼摄食及仔鱼营养状况进行深入分析,初步了解了饥饿因素在食蚊鱼入侵早期种群增长中的影响。研究结果显示,该种群食蚊鱼仔幼鱼主要以枝角类、桡足类为食物,同时能够广泛利用栖息地食物资源,包括种类较为丰富的水生昆虫幼体、弹跳虫等,具有广食性的摄食策略,许多个体食物多样性指数>1。这些特点与其口裂较大、发育较为完善的特点密切相关。尽管如此,仍有高达73.27%的食蚊鱼仔鱼存在饥饿胁迫问题,可能与奠基种群自身生物学特点、仔鱼群体内部竞争、行为特点及环境资源差异化分布格局等因素密切相关。对奠基种群而言,入侵早期仔幼鱼面临陌生的栖息地生境,其摄食与营养状况对种群的定殖有关键影响。  相似文献   

9.
Parts of the Arctic charr population of the subarctic Lake Visjön in north-west Sweden migrate upstream during the spring to two small, recently eutrophied and very productive lakes. Large repeat migrants arrive first, followed by young first-time migrants. Charr in the small lakes grow more rapidly than those resident in L. Visjön. In early September mature fish leave the lakes, followed by immature fish later in September and in October. Overwintering and spawning takes place in L. Visjön. Migratory females attain maturity at age 4 years and resident females at age 6 years. The migrant fish return annually until they are 5–6 years old. This limit may be due to reduced relative growth benefits of the habitat shift for larger individuals. The rapid development of these regular habitat shifts could be explained by an internally fixed exploratory behaviour in these Arctic charr that makes the detection and utilization of distant feeding resources possible. Migrants will possess a considerably higher fitness, if survival rates for migratory and resident fish are equal.  相似文献   

10.
Although some primary consumers such as chironomid larvae are known to exploit methane‐derived carbon via microbial consortia within aquatic food webs, few studies have traced the onward transfer of such carbon to their predators. The ruffe Gymnocephalus cernuus is a widespread benthivorous fish which feeds predominantly on chironomid larvae and is well adapted for foraging at lower depths than other percids. Therefore, any transfer of methanogenic carbon to higher trophic levels might be particularly evident in ruffe. We sampled ruffe and chironomid larvae from the littoral, sub‐littoral and profundal areas of Jyväsjärvi, Finland, a lake which has previously been shown to contain chironomid larvae exhibiting the very low stable carbon isotope ratios indicative of methane exploitation. A combination of fish gut content examination and stable isotope analysis was used to determine trophic linkages between fish and their putative prey. Irrespective of the depth from which the ruffe were caught, their diet was dominated by chironomids and pupae although the proportions of taxa changed. Zooplankton made a negligible contribution to ruffe diet. A progressive decrease in δ13C and δ15N values with increasing water column depth was observed for both chironomid larvae and ruffe, but not for other species of benthivorous fish. Furthermore, ruffe feeding at greater depths were significantly larger than those feeding in the littoral, suggesting an ontogenetic shift in habitat use, rather than diet, as chironomids remained the predominant prey item. The outputs from isotope mixing models suggested that the incorporation of methane‐derived carbon to larval chironomid biomass through feeding on methanotrophic bacteria increased at greater depth, varying from 0% in the littoral to 28% in the profundal. Using these outputs and the proportions of littoral, sub‐littoral or profundal chironomids contributing to ruffe biomass, we estimated that 17% of ruffe biomass in this lake was ultimately derived from chemoautotrophic sources. Methanogenic carbon thus supports considerable production of higher trophic levels in lakes.  相似文献   

11.
North temperate fish in post‐glacial lakes are textbook examples for rapid parallel adaptive radiation into multiple trophic specialists within individual lakes. Speciation repeatedly proceeded along the benthic–limnetic habitat axis, and benthic–limnetic sister species diverge in the number of gill rakers. Yet, the utility of different numbers of gill rakers for consuming benthic vs. limnetic food has only very rarely been experimentally demonstrated. We bred and raised families of a benthic–limnetic species pair of whitefish under common garden conditions to test whether these species (i) show heritable differentiation in feeding efficiency on zooplankton, and (ii) whether variation in feeding efficiency is predicted by variation in gill raker numbers. We used zooplankton of three different size classes to investigate prey size dependency of divergence in feeding efficiency and to investigate the effect strength of variation in the number of gill rakers. Our results show strong interspecific differences in feeding efficiency. These differences are largest when fish were tested with the smallest zooplankton. Importantly, feeding efficiency is significantly positively correlated with the number of gill rakers when using small zooplankton, also when species identity is statistically controlled for. Our results support the hypothesis that a larger number of gill rakers are of adaptive significance for feeding on zooplankton and provide one of the first experimental demonstrations of trait utility of gill raker number when fish feed on zooplankton. These results are consistent with the suggested importance of divergent selection driven feeding adaptation during adaptive radiation of fish in post‐glacial lakes.  相似文献   

12.
The relations between allozyme heterozygosity, relative date of first feeding and life history strategy in juvenile Atlantic salmon Salmo salar were examined using eggs obtained from a 400 family cross (20 male × 20 female adult Atlantic salmon). Multilocus heterozygosity, through its positive associations with the timing of first feeding and growth rate, was correlated with life history strategy in juvenile Atlantic salmon, albeit under genotype × environmental (temperature, food availability) regulation. Under hatchery conditions, a 10 day difference was observed in the relative date of first feeding between early and late first feeding Atlantic salmon. Early first feeding Atlantic salmon exhibited a significantly higher mean heterozygosity, grew faster at ambient water temperature (April to November) and a significantly higher proportion adopted the early freshwater maturation (age 0+ years, male fish) or early migrant (age 1+ years, mainly female fish) strategies compared to late first feeding Atlantic salmon. Elevated water temperatures over the winter (December to April, >10·5° C) provided additional growth opportunity allowing previously mature male parr (mainly early first feeders) and lower modal group parr (mainly late first feeders) to adopt the early migrant strategy by the following spring.  相似文献   

13.
The Arctic charr Salvelinus alpinus populations of the subarctic lakes Takvatn and Fjellfrøsvatn, north Norway, concentrated in the littoral zones (0–15 m) of the lakes during the entire winter (December to May) despite very low temperatures (0·2 and 0·7° C). High prey availability, low predation and competition and comparatively better light under snow and ice in shallow compared with deep water are probable reasons. At ice break in June, all Arctic charr moved to the profundal zone for a brief period, probably in response to the sudden light increase and a profundal resource peak of chironomid pupae. In the summer, the Arctic charr are found in the pelagic, profundal and littoral zones of the lakes. These populations therefore perform regular habitat shifts between the littoral zone in the winter, the profundal zone at ice break and the whole lake in the summer and autumn. The fish fed continuously during winter despite the cold water and the poor light. Amphipods and chironomid larvae dominated the diet. Catch per unit effort, numbers of stomachs with food and food intake rates varied with the subarctic light cycle but were lowest after the winter solstice. The winter assimilation of energy was about equal to the standard metabolism in Takvatn but was higher in Fjellfrøsvatn. The assimilation increased in both lakes under the spring ice in May. The habitat choice, diet and energy assimilation indicate that the Arctic charr is well adapted to the extreme winter conditions of subarctic lakes.  相似文献   

14.
This paper forms a sequel to that describing the physical and chemical aspects of Chew Valley and Blagdon Lakes (Wilson et al., 1975). General accounts of the phytoplankton, zooplankton, macrophytes, littoral and benthic faunas, and fish are presented, based on surveys undertaken between 1966 and 1973. The spring diatom blooms (principally Asterionella) are correlated with silica and phosphate depletion in both lakes, while growths of blue-green (principally Microcystis) in the summer and autumn are correlated with low values of nitrate and saline ammonia. The principal zooplankter in both lakes is Daphnia hyalina. Daphnia pulex was found very commonly in Blagdon in 1970/71, but has not been recorded since. The Daphnia in Chew are smaller in size than those in Blagdon. Blagdon is richer in abundance and number of species of littoral animals, and in macrophyte development, than is Chew. The benthos of both lakes is very similar, except that Blagdon has a well-established population of Anodonta cygnaea, while in Chew the species has apparently only recently become established. Both lakes are maintained artificially as trout fisheries. Other fish present include eels, sticklebacks, and gudgeon. Roach and Perch are found in Chew only. An outline account of their food is given based on stomach content analysis, and shows that trout feed principally on chironomid pupae in spring, and on small fish in autumn.  相似文献   

15.
1. The distributions of subfossil remains of chironomid larvae in 28 large, deep and stratified lakes in Europe were examined in surface sediments along a latitudinal transect ranging from northern Sweden to southern Italy. 2. Canonical correspondence analysis (CCA) showed that summer surface water and July air temperature, as well as total phosphorus (TP) concentrations, hypolimnetic oxygen availability and conductivity were statistically significant (P < 0.05) explanatory variables explaining between 11 and 14% of the variance in the chironomid data. 3. Owing to the spatial scale covered by our study, many environmental variables were covarying. Temperature, TP concentration and oxygen availability were positively or negatively correlated with the first axis of a detrended correspondence analysis (DCA) of chironomid assemblages, suggesting that climatic and trophic conditions influenced profundal chironomid assemblages either in a direct (food and oxygen) or in an indirect (temperature) way. Parameters related to local environmental conditions, lake morphology and bedrock geology, such as organic matter content of the sediment, maximum lake depth, Secchi depth and pH, were not significant in explaining the distribution of chironomid assemblages in our study lakes. 4. The strong relationship between chironomid assemblages and summer temperature may be related to the covariation of temperature with parameters, such as nutrient and oxygen availability, known to affect chironomid assemblages in deep, stratified lakes. However, summer temperature explained a statistically significant proportion of the variance in the chironomid assemblages even when effects of oxygen availability and TP concentrations were partialled out. This suggests that summer temperature has an effect on chironomid assemblages in deep lakes, which is not related to its covariation with trophic state. 5. The potential of fossil chironomid analysis for quantitatively reconstructing past nutrient conditions in deep, stratified lakes was examined by calculating the Benthic Quality Index (BQI) based on subfossil chironomids and by comparing BQI values with observed TP concentrations. BQI was linearly related to log‐transformed TP. Applying this relationship to fossil chironomid assemblages from Lake Päijänne (Finland) produced a TP reconstruction in agreement with measured TP during the period 1970–1990, demonstrating that this approach can provide quantitative estimates of past nutrient concentrations in deep, stratified lakes.  相似文献   

16.
The diets and feeding periodicities of two small, riffle-dwelling fish, the torrentfish, Cheimarrichthys fosteri , and the bluegilled bully, Gobiomorphus hubbsi , were investigated in an unstable, braided New Zealand river from May 1985 to April 1986. Aquatic insect larvae dominated diets of all fish and dietary overlap between species was high in 10 of 12 months. Nevertheless, the relative importance of prey items, as assessed by the index of relative importance (IRI), differed between species. Gobiomorphus hubbsi fed almost exclusively on larval Deleatidium (Ephemeroptera), whereas C. fosteri consumed a greater variety of prey items, with Deleatidium and trichopteran, elmid and chironomid larvae numerically dominant. A dietary switch from Deleatidium to chironomid larvae occurred in both species during December 1985, when total and relative abundances of mayfly and other benthic macroinvertebrate larvae were severely reduced by two consecutive floods. A diel sampling programme indicated that the feeding periodicity of the two species differed: C. fosteri was a nocturnal feeder, whereas G. hubbsi exhibited a strong crepuscular peak in feeding activity. Overall, the two fish partition their food resource weakly by consuming prey items in different proportions and sizes and more strongly by utilizing the food resource at different times.  相似文献   

17.
Synopsis This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.  相似文献   

18.
Analysis of 1,063 stomach contents from 39 species of sea snakesindicates that about one-third of the shallow, warm, marine,Indo-Australian fish families are preyed upon by sea snakes.Families of eels and gobies are taken by the greatest numbersof snake species. Most species of sea snakes feed on fish familieswhose members are relatively sedentary, dwelling along the bottom,within burrows or reef crevices. With one exception, a fishegg-eating specialization found uniquely in the Aipysurus-Emydocephaluslineage, the dietary habits of sea snakes cannot be categorizedaccording to the snakes' three phylogenetic lineages. Eels,mullet-like, rabbitfish-like and goby-like fish forms are takenby all three lineages. Two or three snake species are generalists,and numerous ones specialize on eels, goby-like fish or catfish.There are differences among sea snake species in the relationshipbetween snake neck girth and the maximum diameter of the prey;in the relationships of both snake gape measurements and fanglength, to the type of prey taken; and in the relationship ofsnake shape and body proportions to the prey selected. Severalmodes of feeding have been observed among sea snakes: feedingin nooks and crannies in the bottom or in reefs, cruising nearthe bottom, and feeding in drift lines. Analysis of percentdigestion of stomach contents and projections backward to thetimes of prey capture provides evidence for feeding periodicity.The greatest amount of diet overlap is for two species of seasnakes which do not both occur at the same locality. Where speciesdo co-occur, diet overlap index values are lower. The numbersof species present as well as their relative abundances varyamong localities as does the relative importance of generalists,eel-eaters, egg-eaters and other specialized feeders.  相似文献   

19.
Horizontal and vertical heterogeneity as a result of size‐structured processes are important factors influencing indirect effects in food webs. In a whole‐lake experiment covering 5 years, we added the intermediate consumer roach (Rutilus rutilus) to two out of four lakes previously inhabited by the omnivorous top predator perch (Perca fluviatilis). We focused our study on the direct consumption effect of roach presence on zooplankton (and indirectly phytoplankton) versus the indirect effect of roach on zooplankton (and phytoplankton) mediated via effects on perch reproductive performance. The patterns in zooplankton and phytoplankton abundances were examined in relation to population density of roach and perch including young‐of‐the‐year (YOY) perch in the light of non‐equilibrium dynamics. The presence of roach resulted in changed seasonal dynamics of zooplankton with generally lower biomasses in May–June and higher biomasses in July–August in roach lakes compared to control lakes. Roach presence affected perch recruitment negatively and densities of YOY perch were on average higher in control lakes than in treatment lakes. In years when perch recruitment did not differ between lakes as a result of experimental addition of perch eggs, total zooplankton biomass was lower in treatment lakes than in control lakes. Phytoplankton biomass showed a tendency to increase in roach lakes compared to control lakes. Within treatment variation in response variables was related to differences in lake morphometry in treatment lakes. Analyses of the trophic dynamics of each lake separately showed strong cascading effects of both roach and YOY perch abundance on zooplankton and phytoplankton dynamics. Consideration of the long transients in the dynamics of top predators (fish) in aquatic systems that are related to their long life span involving ontogenetic niche shifts is essential for making relevant interpretations of experimental perturbations. This conclusion is further reinforced by the circumstance that the intrinsic dynamics of fish populations may in many cases involve high amplitude dynamics with long time lags.  相似文献   

20.
In streams, physical and biotic conditions change from the headwaters to the mouth, shaping longitudinal patterns in community structure. We examined how fish foraging effects on periphyton and benthic invertebrates changed along a longitudinal gradient of a warm-temperate stream in southwestern Japan. We established three study sites according to changes in the composition of fish feeding guilds (upper site characterized by drifting-invertebrate feeders, Oncorhynchus masou ; middle site by benthic invertebrate feeders, Rhinogobius spp.; lower site by the presence of periphyton grazers, Sicyopterus japonicus ), and performed two manipulative experiments to examine effects of different fish assemblages on periphyton and benthic invertebrate abundances. Results of an exclosure experiment suggested that fishes had no effect on the benthic assemblages at the upper and middle sites whereas fishes reduced the abundances of both periphyton and invertebrates on stone surfaces at the lower site, where both benthic invertebrate feeders and grazers inhabited. A subsequent enclosure experiment showed that the reduction of invertebrate densities at the lower site was caused by the grazers rather than benthic invertebrate feeders. These experimental results suggested that effects of fishes on benthic assemblages are intensified downstream, owing to the occurrence of the grazing fish. Furthermore, observational data based on field sampling suggested that such grazing effects were reflected in longitudinal patterns in periphyton and invertebrate abundances. Overall results emphasize an important role of the grazing fish ( S. japonicus ) in shaping longitudinal patterns in benthic assemblage structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号