首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of acute hypoxaemia on right and left ventricular function was investigated in 8 fetal sheep (137-140 days gestation). Fetuses were instrumented with electromagnetic flow sensors on the ascending aorta and the main pulmonary artery. After 8 days recovery, hypoxaemia was achieved by reducing the maternal ewe's inspired O2 concentration to 13.1 +/- 1.5%. Control and hypoxaemic arterial blood values were pH 7.37 +/- 0.04 (SD) and 7.35 +/- 0.06, PCO2 48.0 +/- 2.8 and 47.6 +/- 5.1 mmHg, PO2 19.9 +/- 2.2 and 11.4 +/- 1.5 mmHg, haematocrit 37.5 +/- 1.2 and 39.5 +/- 2.2, respectively. Arterial pressure increased insignificantly with acute hypoxaemia (50.2 +/- 3.9 to 53.6 +/- 8.1 mmHg). Left and right ventricular performance was assessed by generating biventricular function curves relating stroke volume to mean atrial pressure. All function curves were composed of steep ascending and plateau limbs that intersected at a breakpoint. Comparing control and hypoxaemia function curves, the left ventricular stroke volume breakpoints were 0.79 +/- 0.20 and 0.78 +/- 0.21 ml/kg, respectively, while the right ventricular stroke volume breakpoints were 0.99 +/- 0.11 and 0.88 +/- 0.21 ml/kg (n.s.). In 4 fetuses, acute hypoxaemia was associated with significant increases in arterial blood pressure (P less than 0.05). In these fetuses, the right ventricular function curve was shifted significantly downward compared to the control right ventricular curve. When nitroprusside was given to these hypertensive fetuses to return blood pressure to control levels, the right ventricular function curve returned to baseline. We conclude that even under conditions of extreme hypoxaemia, ventricular function is well preserved in the normotensive fetal sheep. However, when increases in arterial pressure also accompany hypoxaemia, detectable changes in right ventricular function can be accounted for by changes in arterial pressure.  相似文献   

2.
The effect of a progressive increase in right ventricular (RV) afterload was studied in pigs less than 24 h (group I) and 3-5 days old (group III). RV load was applied to increase mean pulmonary arterial pressure (Ppa) until right to left shunt was observed. Initially, pigs in group I had a significantly lower systemic arterial pressure (Psa = 63 +/- 2 vs. 82 +/- 5 mmHg) and higher Ppa (30 +/- 1 vs. 23 +/- 2 mmHg) even though the RV stroke work (RVSW) was similar (54.3 +/- 10.8 vs. 32.4 +/- 2.1 mmHg/ml) to group II. After a progressive rise in afterload, pigs in group I could maintain a higher RV stroke volume than those in group II (1.3 +/- 0.3 vs. 0.4 +/- 0.1 ml; P less than 0.05). At shunt condition, the RVSW was increased by 21 +/- 14% of the initial value in group I vs. a 32 +/- 8% decrease in group II (P less than 0.05). The ductus arteriosus was constricted and right-to-left shunt was observed in all animals at the foramen ovale level even though Ppa exceeded Psa before the rise in the right atrial pressure in group I. Thus, as RV afterload is increased in the pig, the older animals' right ventricle is progressively less capable of maintaining pulmonary blood flow than animals within 24 h of birth.  相似文献   

3.
The effect of prolonged hypobaric hypoxia on growth of fetal sheep   总被引:1,自引:0,他引:1  
The effect of prolonged hypobaric hypoxia on fetal sheep was studied. Pregnant ewes were subjected to an atmospheric pressure of 429 torr from 30 days to 135 days gestation (long-term study). Average fetal weight for the hypoxaemic group (3.35 +/- 0.53 kg; n = 4; mean +/- SD) was significantly lower than for the controls (4.23 +/- 0.29 kg; n = 7; P less than 0.05). A short-term study was undertaken with fetuses (n = 8) which were catheterized at 110 days gestation and whose dams were subjected to hypobaric hypoxia from 120 to 141 days gestation. The mean carotid PO2 of fetuses in the hypoxic group was 12.7 +/- 0.7 torr compared to 22.7 +/- 0.7 torr for the control group (n = 9; P less than 0.001) throughout the period of treatment. Fetal arterial oxygen content fell from 6.5 +/- 1.7 to 4.9 +/- 0.4 ml/dl (P less than 0.05), but rose to control values after 7 days due to an increase in fetal haemoglobin concentration (9.6 +/- 1.1 to 13.0 +/- 1.9 g/dl, P less than 0.001) and packed cell volume (33 +/- 3 to 45 +/- 4%, P less than 0.001). In the hypoxaemic fetuses, pH fell initially from 7.34 +/- 0.02 to 7.28 +/- 0.03 (P less than 0.05) and then recovered to 7.32 +/- 0.03 within 24 h. Mean fetal weight of the short-term hypoxic group was 3.46 +/- 0.72 kg compared to 4.15 +/- 0.51 for the control group (P less than 0.05). Both long- and short-term hypoxia produced a similar reduction in fetal body weight. The adrenal glands were significantly heavier in the hypoxic fetuses than in controls. Placental weight was not effected by hypoxia, but exposure from 30 days gestation reduced the average size of cotyledons (P less than 0.05). It is concluded that the fetal sheep increases its ability to acquire and transport oxygen in response to chronic hypoxia, but this compensation is not sufficient to prevent growth retardation or changes to the pattern of tissue growth.  相似文献   

4.
Fetal volume control is driven by an equilibrium between fetal and maternal hydrostatic and oncotic pressures in the placenta. Renal contributions to blood volume regulation are minor because the fetal kidneys cannot excrete fluid from the fetal compartment. We hypothesized that an increase in fetal plasma protein would lead to an increase in plasma oncotic pressure, resulting in an increase in fetal arterial and venous pressures and decreased angiotensin levels. Plasma or lactated Ringer solution was infused into each of five twin fetuses. After 7 days, fetal protein concentration was 71.2 +/- 4.2 g/l in the plasma-infused fetuses compared with 35.7 +/- 6.3 g/l in the lactated Ringer-solution-infused fetuses. Arterial pressure was 68.0 +/- 3.6 compared with 43.4 +/- 1.9 mmHg in the lactated Ringer solution-infused fetuses (P < 0.0003), whereas venous pressure was 4.8 +/- 0.3 mmHg in the plasma-infused fetuses compared with 3.3 +/- 0.4 mmHg in the lactated Ringer solution-infused fetuses (P < 0.036). Six fetuses were studied on days 0, 7, and 14 of plasma protein infusion. Fetal protein concentration increased from 31.1 +/- 1.5 to 84.8 +/- 3.8 g/l after 14 days (P < 0.01), and arterial pressure increased from 43.1 +/- 1.8 to 69.1 +/- 4.1 mmHg (P < 0.01). Venous pressure increased from 3.0 +/- 0.4 to 6.2 +/- 1.3 mmHg (P < 0.05). Fetal heart rate did not change. Angiotensin II concentration decreased, from 24.6 +/- 5.6 to 2.9 +/- 1.3 pg/l, after 14 days (P < 0.01). Fetal plasma infusions resulted in fetal arterial and venous hypertensions that could not be corrected by reductions in angiotensin II levels.  相似文献   

5.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

6.
The aim of this study was to investigate the contribution of direct right-to-left ventricular interaction to left ventricular filling and stroke volume in 46 patients with pulmonary arterial hypertension (PAH) and 18 control subjects. Stroke volume, right and left ventricular volumes, left ventricular filling rate, and interventricular septum curvature were measured by magnetic resonance imaging and left atrial filling by transesophageal echocardiography. Stroke volume, left ventricular end-diastolic volume, and left ventricular peak filling rate were decreased in PAH patients compared with control subjects: 28 +/- 13 vs. 41 +/- 10 ml/m(2) (P < 0.001), 46 +/- 14 vs. 61 +/- 14 ml/m(2) (P < 0.001), and 216 +/- 90 vs. 541 +/- 248 ml/s (P < 0.001), respectively. Among PAH patients, stroke volume did not correlate to right ventricular end-diastolic volume or mean pulmonary arterial pressure but did correlate to left ventricular end-diastolic volume (r = 0.62, P < 0.001). Leftward interventricular septum curvature was correlated to left ventricular filling rate (r = 0.64, P < 0.001) and left ventricular end-diastolic volume (r = 0.65, P < 0.001). In contrast, left atrial filling was normal and not correlated to left ventricular end-diastolic volume. In PAH patients, ventricular interaction mediated by the interventricular septum impairs left ventricular filling, contributing to decreased stroke volume.  相似文献   

7.
We have recently reported a decrease in cardiac output in newborn dogs during respiratory alkalosis which is independent of changes in airway pressure. The present study was designed to characterize the mechanism responsible for this reduction in cardiac output. Twelve newborn coonhounds were anaesthetized with pentobarbital, paralyzed with pancuronium and hyperventilated to an arterial carbon dioxide tension (PaCO2) of 20 torr. Subsequent changes in PaCO2 were achieved by altering the FiCO2. Measurements were made after 30 min at either 40 or 20 torr PaCO2. The sequence of PaCO2 levels was randomized. Compared to normocarbia, respiratory alkalosis resulted in significantly decreased cardiac output (279 +/- 16 to 222 +/- 10 ml/min per kg, mean +/- SEM, P less than 0.001), stroke volume (1.60 +/- 0.10 to 1.24 +/- 0.06 ml/kg; P less than 0.001), maximum left ventricular dP/dt (1629 +/- 108 to 1406 +/- 79 mmHg/s, P less than 0.01) and left ventricular end diastolic pressure (3.9 +/- 0.4 to 2.9 +/- 0.3 mmHg; P less than 0.001). The decrease in cardiac output during respiratory alkalosis is manifest through a decrease in stroke volume, which is due, at least in part, to the decrease in left ventricular end diastolic pressure. The decrease in maximum left ventricular dP/dt is likely a reflection of the decrease in preload, however, a change in myocardial contractility cannot be excluded. We speculate the decrease in filling pressure may be due to an increase in venous capacitance.  相似文献   

8.
Fetal pericardial physiology may be important for understanding normal and abnormal circulatory states. Right atrial, pericardial, thoracic, and amniotic fluid pressures were measured simultaneously in chronically-instrumented, near-term fetal sheep. Fourteen experiments were performed in 8 fetuses 4-21 days after surgery. The pressure gradient from the right atrium to the amniotic fluid and its components (transatrial, transpericardial and transthoracic pressures) were measured during control and with rapid infusion and withdrawal of blood. Under control conditions, right atrial minus amniotic pressure was 3.2 +/- 1.8 (SD) torr, right atrial minus pericardial pressure 2.5 +/- 1.7, pericardial minus thoracic pressure 0.6 +/- 0.7, and thoracic minus amniotic pressure 0.1 +/- 1.4. At right atrial pressures above control, pericardial minus thoracic pressure rose linearly with right atrial minus thoracic pressure. The average regression coefficient was 0.50 with an intercept of -1.5 torr. Administration of dextran-saline solution (121% of estimated blood volume) over 2-4 hs in 10 experiments did not reduce the pericardial minus thoracic to right atrial minus thoracic pressure relationship. Fluid added to the pericardium of three lambs progressively shifted the pericardial minus thoracic to right atrial minus thoracic pressure relationship up and to the left. The pericardial minus thoracic to right atrial minus thoracic pressure relationship was unaffected by fetal growth. Thus, the fetal pericardium affects cardiac filling pressures. The affect of the pericardium is increased markedly by pericardial liquid but is unchanged during growth.  相似文献   

9.
We produced pulmonary fibrin microembolism using an infusion of a prothrombin activator (Echis carinatus venom, 30 min, 0.5 NIH thrombin equivalent units/kg) in open-chest mongrel dogs. To determine the nonclotting effects of this venom on edemagenesis we infused an irreversible thrombin inhibitor, D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK, 57 nmol X kg-1 X min-1 for 120 min), alone (n = 5) or with venom (Echis + PPACK, n = 5). The control group (n = 5) was given 1 ml of 0.9% NaCl. A decline in left atrial pressure (means +/- SE, 5.3 +/- 0.4 to 4.0 +/- 0.5 mmHg, P less than 0.05) and cardiac index (149 +/- 10 to 82 +/- 13 ml X min-1 X kg-1, P less than 0.01) in association with a marked increase in pulmonary arterial pressure (14.5 +/- 0.6 to 26.6 +/- 2.5 mmHg, P less than 0.001) and pulmonary vascular resistance (64 +/- 5 to 304 +/- 42 mmHg X ml-1 X min-1 X kg-1, P less than 0.001) was observed after 20 min of venom infusion. During this interval, pulmonary artery wedge pressure increased (4 +/- 1 to 12 +/- 4 mmHg, P less than 0.01) in four of eight animals. Fibrinogen declined below measurable levels and fibrin microemboli were seen in many pulmonary arterioles. These changes were not observed in the Echis + PPACK, PPACK, or control groups. Leukopenia and thrombocytopenia were observed in the Echis and Echis + PPACK groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The blood volume of anesthetized rats was expanded acutely by 33% with donor blood while a caval snare was gradually tightened so that right atrial pressure (RAP) was prevented from rising (n = 6). In control experiments (n = 5) an aortic snare was used to hold mean arterial blood pressure near the values found in the experimental series. However, RAP was allowed to change freely and increased by 1.6 +/- 0.4 mmHg (1 mmHg = 133.322 Pa) during volume expansion. When the two groups were compared, there were no significant differences between their mean arterial blood pressures (near 110 mmHg) or in their cardiac outputs (near 0.25 mL X min-1 X g body weight-1). There were, however, significant differences between their renal responses to the volume load. When RAP was free to change, the rate of volume excretion (V) increased to 30 +/- 15 (SEM) microL X min-1 X g kidney weight-1 (KW) from its control value of 3.49 +/- 0.31 and the rate of sodium excretion (UNaV) increased to 3.59 +/- 0.20 muequiv X min-1 X g KW-1 from its preinfusion value of 0.42 +/- 0.10. When RAP was not allowed to increase during volume loading, V and UNaV did not change from their respective preinfusion values (2.99 +/- 0.46 microL X min-1 X g KW-1 and 0.35 +/- 0.10 muequiv X min-1 X g KW-1). The results imply that during acute blood volume expansion increased central vascular pressure is a prerequisite for the homeostasis of body water and salt.  相似文献   

11.
We examined the respiratory effects of a patent ductus arteriosus in 29 premature lambs (131-135 days gestational age) after infiltrating the ductal wall with formaldehyde solution (Formalin) and placing a snare around the ductus to regulate its patency. The lambs were given sheep surfactant, paralyzed, and mechanically ventilated at birth. We first compared 8 lambs with open ductus and 13 lambs with closed ductus during the 12 h after birth. Although lambs with open ductus had greater pulmonary blood flow (301 +/- 36 vs. 188 +/- 11 ml.min-1.kg-1, mean +/- SE, at 12 h of age) and mean pulmonary arterial (44 +/- 3 vs. 33 +/- 2 mmHg) and left ventricular end-diastolic (6 +/- 0.6 vs 4 +/- 0.7 mmHg) pressures, we found no differences in dynamic respiratory compliance (Cdyn = 0.55 +/- 0.07 vs. 0.55 +/- 0.03 ml.cmH2O-1.kg-1), midtidal volume resistance (62 +/- 5 X 10(-3) vs. 62 +/- 7 X 10(-3) cmH2O.ml-1.s), or functional residual capacity (FRC = 27 +/- 3 vs. 26 +/- 2 ml.kg-1). Alveolar-arterial PO2 difference was lower in the lambs with open ductus (238 +/- 65 vs. 362 +/- 37 Torr). Next, we challenged eight lambs with two separate saline infusions (50 ml.kg-1 over 3 min), each given with the ductus alternately closed or open. When the ductus was closed, FRC was unchanged, but Cdyn increased by 18% immediately after the infusion. When the ductus was open, FRC decreased by 16% and Cdyn decreased by 12%. We conclude that the premature lamb is surprisingly resistant to changes in respiratory function from ductal patency during the immediate neonatal period.  相似文献   

12.
The hypothesis was tested that changing the direction of the transverse gravitational stress in horizontal humans modulates cardiovascular and renal variables. On different study days, 14 healthy males were placed for 6 h in either the horizontal supine or prone position following 3 h of being supine. Eight of the subjects were in addition investigated in the horizontal left lateral position. Compared with supine, the prone position slightly increased free water clearance (349 +/- 38 vs. 447 +/- 39 ml/6 h, P = 0.05) and urine output (1,387 +/- 55 vs. 1,533 +/- 52 ml/6 h, P = 0.06) with no statistically significant effect on renal sodium excretion (69 +/- 3 vs. 76 +/- 5 mmol/6 h, P = 0.21). Mean arterial pressure and left atrial diameter were similar comparing effects of supine with prone. The prone position induced an increase in heart rate (54 +/- 2 to 58 +/- 2 beats/min, P < 0.05), total peripheral vascular resistance (13 +/- 1 to 16 +/- 1 mmHg. min(-1). l(-1), P < 0.05), forearm venous plasma concentration of norepinephrine (97 +/- 9 to 123 +/- 16 pg/ml, P < 0.05), and atrial natriuretic peptide (49 +/- 4 to 79 +/- 12 pg/ml, P < 0.05), whereas stroke volume decreased (122 +/- 5 to 102 +/- 3 ml, P < 0.05, n = 6). The left lateral position had no effect on renal variables, whereas left atrial diameter increased (32 +/- 1 to 35 +/- 1 mm, P < 0.05) and mean arterial pressure decreased (90 +/- 2 to mean value of 85 +/- 2 mmHg, P < 0.05). In conclusion, the prone position reduced stroke volume and increased sympathetic nervous activity, possibly because of mechanical compression of the thorax with slight impediment of arterial filling. The mechanisms of the slightly augmented urine output in prone position require further experimentation.  相似文献   

13.
To examine the existence of pressure equilibrium between tributary veins and the central vena cava during the mean circulatory filling pressure manoeuvre, pressures in the hepatic portal vein, renal vein, and inferior vena cava were determined at 4-s intervals over a 20-s period of circulatory arrest induced by inflating a right atrial balloon in normal blood volume, 10% volume depletion, and 10% volume expansion states in urethane-anaesthetized rats. Portal vein pressure determined 8 s after arrest during volume depletion and expansion was significantly higher than vena caval pressure (6.2 +/- 0.8 vs. 3.4 +/- 0.2 and 7.7 +/- 0.5 vs. 6.2 +/- 0.4 mmHg (1 mmHg = 133.32 Pa), respectively; p less than 0.01); this pressure disequilibrium continued for 16 s during volume expansion and for the entire 20 s during volume depletion. Renal vein pressure was equal to vena caval pressure during this manoeuvre. Portal vein pressure at normal blood volume was not significantly different from vena caval pressure following circulatory arrest (4.6 +/- 0.3 vs. 3.8 +/- 0.4 mmHg, respectively). Following ganglionic blockade, portal vein pressure was still significantly higher than vena caval pressure for 12 s during volume alterations. At the 8th s of the arrest the portal pressure determined in volume depletion was 3.6 +/- 0.3 mmHg and the inferior vena caval pressure was 2.6 +/- 0.4 mmHg (p less than 0.05). Under the volume expansion condition, the respective values were 6.5 +/- 0.3 and 5.3 +/- 0.4 mmHg (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

15.
With respiration, right ventricular end-diastolic volume fluctuates. We examined the importance of these right ventricular volume changes on left ventricular function. In six mongrel dogs, right and left ventricular volumes and pressures and esophageal pressure were simultaneously measured during normal respiration, Valsalva maneuver, and Mueller maneuver. The right and left ventricular volumes were calculated from cineradiographic positions of endocardial radiopaque markers. Increases in right ventricular volume were associated with changes in the left ventricular (LV) pressure-volume relationship. With normal respiration, right ventricular end-diastolic volume increased 2.3 +/- 0.7 ml during inspiration, LV transmural diastolic pressure was unchanged, and LV diastolic volume decreased slightly. This effect was accentuated by the Mueller maneuver; right ventricular end-diastolic volume increased 10.4 +/- 2.3 ml (P less than 0.05), while left ventricular end-diastolic pressure increased 3.6 mmHg (P less than 0.05) without a significant change in left ventricular end-diastolic volume. Conversely, with a Valsalva maneuver, right ventricular volume decreased 6.5 +/- 1.2 ml (P less than 0.05), and left ventricular end-diastolic pressure decreased 2.2 +/- 0.5 mmHg (P less than 0.05) despite an unchanged left ventricular end-diastolic volume. These changes in the left ventricular pressure-volume relationship, secondary to changes in right ventricular volumes, are probably due to ventricular interdependence. Ventricular interdependence may also be an additional factor for the decrease in left ventricular stroke volume during inspiration.  相似文献   

16.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

17.
The present study was designed to determine the plasma clearance rate of atrial natriuretic factor (ANF) during development in chronically-instrumented fetal, newborn and adult non-pregnant sheep. To determine the contribution of the kidney in the metabolism of ANF, urinary clearance of ANF was also measured. Intravenous infusion of ANF (0.025 and 0.1 microgram.min-1.kg-1) produced a significant decrease in mean arterial blood pressure in newborn lambs and in adult non-pregnant sheep. Estimated plasma ANF clearance rate for the 0.025 and 0.1 microgram.min-1.kg-1 ANF infusion rate were respectively 177 +/- 55 and 155 +/- 34 ml.min-1.kg-1 in fetuses, 138 +/- 26 and 97 +/- 13 ml.min-1.kg-1 in newborn lambs and, 148 +/- 33 and 103 +/- 25 ml.min-1.kg-1 in adult nonpregnant ewes. Fetal, newborn and adult ANF plasma clearance rates during high ANF infusion rate (0.1 microgram.min-1.kg-1) were not significantly different. Low or high ANF infusion rate was not associated with significant changes in urinary ANF concentration or urinary ANF excretion rate. Taken together, the present study demonstrates that ANF plasma clearance rate is similar in fetal, newborn and adult non-pregnant sheep and that the excretory function of the kidney contributes only minimally to ANF plasma clearance rate.  相似文献   

18.
To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by +/- 5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 +/- 3 to 67 +/- 3 mL/kg; mean circulatory filling pressure increased from 7.1 +/- 0.2 to 8.0 +/- 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 +/- 0.2 to 2.1 +/- 0.3 mmHg; and cardiac output increased from 71.8 +/- 3.9 to 96.8 +/- 3.3 mL.min-1.kg-1. Total vascular compliance was not changed (2.1 +/- 0.1 mL.kg-1.mmHg-1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We aimed to determine the effects of the electrocortical (ECoG) cycle on fetal heart rate and its autonomic control under normoxaemic and hypoxaemic conditions. Heart rate was measured and selective pharmacological blockade was used to quantify sympathetic and parasympathetic tone in low voltage (LV) and high voltage (HV) ECoG. We studied 3 groups of fetal lambs: 6 normal-sized, normoxaemic fetuses (control); 5 growth-retarded, normoxaemic carunclectomy fetuses (carunclectomy-normoxaemic); and 5 growth-retarded, hypoxaemic carunclectomy fetuses (carunclectomy-hypoxaemic). We found slower heart rate in LV compared to HV ECoG in all groups. This was explained by greater parasympathetic tone in LV in all groups, and by a complementary change of sympathetic tone in control fetuses. Hypoxaemic fetuses had slower heart rate than normoxaemic fetuses in both ECoG states. This was due to augmented parasympathetic tone (in LV ECoG) and reduced sympathetic tone (in LV and HV ECoG). We conclude that complementary changes of autonomic tone underly the normal variation of fetal heart rate with the ECoG cycle, with the parasympathetic arm dominant in LV and the sympathetic arm dominant in HV ECoG. In chronic hypoxaemia, complementary changes of autonomic tone contribute to slowing of fetal heart rate. Increased parasympathetic tone and decreased sympathetic tone may enhance cardiac efficiency when the oxygen supply is chronically reduced.  相似文献   

20.
To examine the relationship between fetal O2 consumption and fetal breathing movements, we measured O2 consumption, umbilical blood flow, and cardiovascular and blood gas data before, during, and after fetal breathing movements in conscious chronically catheterized fetal lambs. During fetal breathing movements, O2 consumption increased by 30% from a control value of 7.7 +/- 0.7 (SE) ml X min-1 X kg-1. Umbilical blood flow was 210 +/- 21 ml X min-1 X kg-1 before fetal breathing movements; in 9 of 16 samples it increased by 52 +/- 12 ml X min-1 X kg-1, while in the other 7 it decreased by 23 +/- 9 ml X min-1 X kg-1. Umbilical arterial and venous O2 partial pressures and pH fell during fetal breathing movements, and the fall was greater when umbilical blood flow was decreased. Partial CO2 pressure rose in both vessels, and again the increase was greatest when umbilical blood flow fell during fetal breathing movements. Also associated with a fall in umbilical blood flow was the transition from low-amplitude irregular to large-amplitude regular fetal breathing movements. It is concluded that fetal breathing movements increase fetal O2 demands and are associated with a transient deterioration in fetal blood gas status, which is most severe during large-amplitude breathing movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号