首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma concentrations of adiponectin, tumor necrosis factor-alpha (TNF-alpha) and its soluble receptors sTNFR-1 and sTNFR-2 were measured in 80 patients with gestational diabetes (GDM) (mean age 29.0 +/- 4.9 years) and 30 pregnant women with normal glucose tolerance (NGT) (mean age 28.2 +/- 6.0 years). We found that GDM patients had significantly lower concentrations of adiponectin (11.28 +/- 5.91 vs. 16.31 +/- 6.04 microg/ml, p = 0.00009) and elevated levels of TNF-alpha (1.71 +/- 0.92 vs. 1.27 +/- 0.42 pg/ml, p = 0.0175) in comparison to NGT women. The differences remained statistically significant after adjusting for BMI. Plasma levels of sTNFR-1 and sTNFR-2 also tended to be higher in GDM patients. In the GDM group TNF-alpha concentrations correlated significantly with sTNFR-1 (r = 0.444, p = 0.00008), sTNFR-2 (r = 0.364, p = 0.0016) and with C-peptide concentrations (r = 0.318, p = 0.016), whereas in women with NGT TNF-alpha correlated only with TG levels (r = 0.50, p = 0.024). Multivariate linear regression analysis revealed that prepregnant BMI was the most predictive indicator of TNF-alpha concentrations in GDM women. TG concentrations as well as BMI before pregnancy and at the time of sampling in pregnant NGT women were significant predictors, explaining 62% of the variance in TNF-alpha concentration. There were also negative correlations between adiponectin concentrations and a pregestational BMI (r = - 0.298, p = 0.009), BMI at the time of sampling (r = - 0.239, p = 0.034) and TG concentrations (r = - 0.379, p = 0.039) in GDM patients, whereas women with NGT showed only a negative correlation between adiponectin and TG concentrations (r = - 0.488, p = 0.025). In a multivariate regression analysis, prepregnancy BMI and TG levels remained significant predictors, explaining 39% of the variation in plasma adiponectin concentration in GDM women. In conclusion, our results suggest that decreased adiponectin concentration in GDM may not simply reflect maternal adiposity and insulin resistant state, but may contribute to the impaired glucose metabolism during pregnancy, with potential implications for screening and prevention of the disease.  相似文献   

2.
In this study we investigated whether leptin and TNFalpha levels change with improvement in body weight with antituberculotic therapy in active tuberculosis patients. 30 patients (8 females and 22 males) with active pulmonary tuberculosis formed the patient group, and 25 sex- and age-matched healthy subjects (8 females and 17 males) served as the control group. Body weight, body mass index (BMI) and serum leptin and plasma TNFalpha levels are measured before and in the sixth month of therapy in all patients. Before the initiation of therapy, BMI of the patients was significantly lower than BMI of the controls (20.2 +/- 1.6 vs. 25.2 +/- 2.7 kg/m(2), respectively; p < 0.05). After treatment, BMI of the patients increased significantly to 21.4 +/- 1.9 kg/m(2) (p < 0.05), but was still lower than that of the controls (p < 0.05). Pretreatment serum leptin (4.5 +/- 0.9 vs. 2.1 +/- 0.2 ng/ml, respectively; p < 0.05) and plasma TNFalpha (27.9 +/- 3.4 vs. 23.9 +/- 3.0 pg/ml, respectively; p < 0.05) levels of the patients were significantly higher than those of the controls. After treatment, serum leptin levels increased to 6.7 +/- 2.2 ng/ml, but this rise was not statistically significant (p > 0.05). Treatment did not result in any significant change in TNFalpha levels, either. Delta leptin was highly related to Delta BMI in patients with tuberculosis (r = 0.68, p = 0.02). In the pretreatment period, there was a significant correlation between leptin and TNFalpha levels in the whole patient group (r = 0.78, p < 0.001), and in female (r = 0.74, p < 0.001) and male patients separately (r = 0.74, p = 0.035). In conclusion, leptin and TNFalpha may be responsible for the weight loss in pulmonary tuberculosis patients, but their levels do not change with improvement in body weight with antituberculotic treatment.  相似文献   

3.
BACKGROUND: Adiponectin is a recently discovered plasma protein with many associations to glucose and lipid metabolism. Due to its central role in cardiovascular diseases and insulin resistance, we studied the relationship between serum adiponectin and factors reflecting glucose and lipid metabolism. METHODS AND RESULTS: Thirty healthy participants (20M/10F, age 32.0 +/- 2.1 years, BMI 25.8 +/- 0.9 kg/m (2) and HbA (1c) 5.2 +/- 0.1 %) were studied four times at approximately one week intervals. The effects of a 4-hour euglycemic hyperinsulinemia (40 mU/m (2)/min), saline infusion (control), oral glucose, and oral fat load on serum adiponectin were studied. No significant correlation was found between serum adiponectin and insulin sensitivity before (r = 0.25) or after adjustment for age, BMI and gender (r = 0.04). Adiponectin concentration correlated inversely with HbA (1c) (r = - 0.43, p < 0.05), insulin concentration (r = - 0.38, p < 0.05) and triglyceride concentration (r = - 0.42, p < 0.05) but positively with HDL cholesterol (r = 0.38, p < 0.05). Metabolic procedures had no effect on serum adiponectin. CONCLUSIONS: Our findings favor the interpretation that adiponectin is not causally related to insulin sensitivity in healthy participants. The strongest associations of adiponectin in healthy participants are to be found to lipid metabolism. Serum levels of adiponectin are very stable and not acutely affected by hyperinsulinemia, oral glucose or fat load.  相似文献   

4.
The aim of the current investigation was to investigate any potential effect of fasting plasma adiponectin concentration on bone tissue, and to find possible relationships of fasting plasma adiponectin level with different body composition, insulin sensitivity and physical performance parameters in a group of healthy perimenopausal women. Twenty-one premenopausal and 17 early postmenopausal women participated in this study. The women were matched for body mass index (BMI) and level of mean daily energy expenditure. Women had similar adiponectin (8.4 +/- 3.9 vs. 9.9 +/- 5.4 microg/ml) and leptin values (12.0 +/- 7.7 vs. 14.0 +/- 8.2 ng/ml) before and after menopause. Significant relationships were observed between plasma adiponectin and bone mineral content, total bone mineral density (BMD) and lumbar spine BMD values (r > - 0.36; p < 0.05). Furthermore, adiponectin had a significant negative association with total BMD (beta = - 1.228; p = 0.004) and lumbar spine BMD (beta = - 0.312; p = 0.005) independent of the influence that other measured body compositional, hormonal or physical performance factors may exert on BMD. Adiponectin was also significantly related to waist-to-hip ratio (WHR) (beta = - 2.300; p = 0.002) and fasting insulin resistance index (FIRI) (beta = - 0.006; p = 0.007) in separate regression models. No relationship was observed between leptin and measured bone, physical performance and insulin resistance values. Leptin significantly correlated to BMI (beta = 0.018; p = 0.034), lean body mass (beta = 0.025; p = 0.024) and fat mass (beta = 0.019; p = 0.001) in separate regression models. In conclusion, the results of present study show that circulating adiponectin appears to exert an independent effect on BMD in perimenopausal women and may represent a link between adipose tissue and bone mineral density.  相似文献   

5.
Adipokines are predominantly secretory protein hormones from adipose tissue but may also originate in placenta and other organs. Cross-sectionally, we monitored maternal plasma concentration of adiponectin, resistin, and leptin and their mRNA expression in abdominal subcutaneous adipose tissue and placenta from preeclamptic (PE; n = 15) and healthy pregnant (HP; n = 23) women undergoing caesarean section. The study groups were similar in age and BMI, whereas HOMA-IR tended to be higher in the PE group. In fasting plasma samples, the PE group had higher concentrations of adiponectin (18.3 +/- 2.2 vs. 12.2 +/- 1.1 microg/ml, P = 0.011), resistin (5.68 +/- 0.41 vs. 4.65 +/- 0.32 ng/ml, P = 0.028), and leptin (34.4 +/- 3.2 vs. 22.7 +/- 2.1 ng/ml, P = 0.003) compared with the HP group. Adiponectin and leptin concentrations were still different between PE and HP after controlling for BMI and HOMA-IR, whereas resistin concentrations differed only after controlling for BMI but not HOMA-IR. We found similar mean mRNA levels of adiponectin, resistin, and leptin in abdominal subcutaneous adipose tissue in PE and HP women. When data were pooled from PE and HP women, resistin mRNA levels in adipose tissue also correlated with HOMA-IR (r = 0.470, P = 0.012) after controlling for BMI and pregnancy duration. Resistin mRNA levels in placenta were not significantly different between PE and HP, whereas leptin mRNA levels were higher in PE placenta compared with HP. Thus increased plasma concentrations of adiponectin and resistin in preeclampsia may not relate to altered expression levels in adipose tissue and placenta, whereas both plasma and placenta mRNA levels of leptin are increased in preeclampsia.  相似文献   

6.
Heroin addiction markedly affects the nutritional and metabolic status and frequently leads to malnutrition. The aim of our study was to compare circulating concentration of adipose tissue-derived hormones leptin, adiponectin and resistin in 12 patients with heroin addiction before and after one-year methadone maintenance treatment with the group of 20 age- and body mass index-matched healthy subjects. Basal serum leptin and adiponectin levels in heroin addicts were significantly decreased (3.4+/-0.4 vs. 4.5+/-0.6 ng/ml and 18.9+/-3.3 vs. 33.9+/-3.1 ng/microl, respectively; p 0.05) while serum resistin concentrations were increased compared to healthy subjects (10.1+/-1.2 vs. 4.6+/-0.3 ng/ml; p 0.05). Moreover, positive correlation of serum leptin levels with body mass index was lost in the addicts in contrast to control group. One year of methadone maintenance treatment normalized serum leptin, but not serum adiponectin and resistin concentrations. In conclusion, circulating concentrations of leptin, adiponectin and resistin are markedly altered in patients with chronic heroin addiction. These alterations appear to be relatively independent of nutritional status and insulin sensitivity.  相似文献   

7.
Impaired fibrinolysis is a common finding in obese humans. This condition is now considered as an established risk factor for thromboembolic complications. Furthermore, obesity is characterized by a specific pattern of circulating concentrations of fat-cell products interleukin-6 (IL-6), leptin, and adiponectin. The aim of our study was to investigate the relationship between these proteins and selected variables of the fibrinolytic system in 74 mildly hypertensive, overweight subjects. Circulating IL-6 and leptin levels showed a positive association with BMI (r = 0.24, p = 0.04 and r = 0.70, p < 0.0001), whereas adiponectin was not correlated to BMI. Interestingly, IL-6 was also positively associated with t-PA/PAI-1 complexes after adjustment for BMI and other anthropometric variables. Leptin was positively correlated with PAI-1 activity and antigen (r = 0.32, p = 0.006 and r = 0.37, p < 0.001, respectively) and negatively with t-PA activity (r = -0.27, p = 0.03). However, these associations lost significance after correction for BMI or HOMA, an insulin sensitivity index. In contrast, adiponectin levels were independently and negatively correlated with PAI-1 antigen (r = -0.26, p = 0.04, after correction for BMI). In conclusion, our study provides further evidence that IL-6, leptin, and adiponectin are associated with impaired fibrinolysis in overweight hypertensive humans.  相似文献   

8.
In this study, we describe changes of plasma levels of the hypothalamic neuropeptide orexin A in obese children during the reduction of body weight and its relationship to other biochemical and anthropometrical parameters. We measured orexin A fasting plasma levels by the RIA method in 58 obese children--33 girls and 25 boys; mean age 13.1+/-0.38 years (range 7-18.5) before and after 5 weeks of weight-reduction therapy. Leptin, IGF-1, and IGFBP-3 levels were measured in all the subjects and were compared to orexin A levels and anthropometrical data. Average weight in subjects before weight-reduction was 74.2+/-2.79 kg and after weight-loss 67.4+/-2.60 kg (p<0.0001). Orexin A levels before the therapy were 33.3+/-1.97 pg/ml and after the therapy 51.7+/-3.07 pg/ml (p<0.0001). Levels of orexin A were not significantly different between girls and boys (p=0.7842). We found negative correlation between orexin A and age (r = -0.5395; p<0.0001), body height (r = -0.4751; p=0.0002), body weight (r = -0.4030; p=0.0017) and BMI (r = -0.2607; p=0.0481). No correlation was found between orexin A and IGF-1, IGFBP-3 or leptin. Orexin A plasma levels increased during body weight loss, whereas the reverse was true for leptin levels. These findings support the hypothesis that orexin A may be involved in regulation of nutritional status in children.  相似文献   

9.
Thyroid hormones as well as the recently discovered secretory products of adipose tissue adiponectin and resistin take part in energy metabolism. To study the changes in the adipocyte hormones with changes in the thyroid functional status, we measured adiponectin, resistin, and leptin in 69 subjects with Graves' disease before and 32 patients at follow up after treatment for hyperthyroidism at hypothyroid state. Concentrations of serum adiponectin and resistin were higher in hyperthyroid state than in hypothyroid state (adiponectin: 5.73 +/- 1.1 vs. 3.0 +/- 0.5 ng/ml, P = 0.03) (resistin: 6.378 +/- 0.6 vs. 5.81 +/- 0.57 ng/ml, P < 0.0001). Resistin levels correlate positively with free t4(r = 0.37, P < 0.01), free t3 levels(r = 0.33, P < 0.01) and negatively with TSH(r = -0.22, P < 0.05). Adiponectin levels correlate with free t4(r = 0.33, P < 0.01) and free t3 (r = 0.44, P < 0.01). Though the adiponectin levels did not correlate with leptin or resistin levels, strong positive correlation of both resistin and adiponectin with thyroid hormones is noted. Serum levels of leptin did not change with change in the thyroid functional status (leptin: 53.38 +/- 2.47 vs. 55.10 +/- 2.58 NS). Leptin levels did not correlate with resistin and adiponectin. We conclude that thyroid function has effect on adipocyte hormones adiponectin and resistin but not leptin.  相似文献   

10.
To evaluate the effect of menopause and estrogen replacement therapy on leptin levels, 17 white postmenopausal women were recruited for the study. After an overnight fasting, blood samples were collected for LH, FSH, estradiol, testosterone, androstenedione, DHEA sulfate, insulin and leptin assays. Body mass index (BMI) and the waist-to-hip ratio were also evaluated. Patients were reanalyzed after a 12-week administration of transdermal estrogen patches delivering 50 microg 17beta-estradiol. The results were compared to those obtained from a group of 11 female volunteers in reproductive age, in whom basal blood was sampled during the early follicular phase of their cycle. Patients were divided into lean and obese according to their BMI. Obese postmenopausal women showed lower leptin levels when compared to premenopausal counterparts (25.1 +/- 5.9 vs. 37 +/- 11.3; p < 0.05), whereas no significant differences were found between the lean groups (14.5 +/- 3.8 vs. 14.4 +/- 4.9). Estrogen administration did not significantly change serum leptin concentrations in hypoestrogenized women (obese: 25.1 +/- 5.9 vs. 28. 6 +/- 9.2; lean: 14.4 +/- 4.9 vs. 17.6 +/- 7.2). A positive linear correlation was found between leptin plasma levels and BMI only in obese patients (r = 0.58; p < 0.01) both before and after estrogen treatment. Menopause is characterized by a decreased expression of the obese gene, even if estrogens do not seem to represent a main causal factor.  相似文献   

11.
Moderate alcohol consumption is associated with increased insulin sensitivity and a reduced risk for type 2 diabetes. An important endogenous mediator of insulin sensitivity is adiponectin (AN), an adipokine that displays numerous antiatherogenic, antidiabetogenic and antiinflammatory effects. Recently, acute increase in alcohol consumption has been shown to be associated with increase in plasma adiponectin and, concomitantly, insulin sensitivity. Whether chronic alcohol consumption predicts an increase in plasma AN and whether this is independent of adiposity, markers of liver dysfunction, and plasma adipokines such as tumor necrosis factor (TNF)-alpha is not known. We, therefore, investigated these relationships in 75 men who were diagnosed with liver steatosis using ultrasound/liver biopsy. We examined 75 men, who were diagnosed for having liver steatosis (ultrasound/liver biopsy). Each filled in a questionnaire on alcohol intake. Subjects were divided into two subgroups according to alcohol history and CDT concentrations--drinkers and non-drinkers. All individuals were examined for serum concentrations of AN, glucose, triglycerides, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate transferase (GMT) activity; carbohydrate-deficient transferrin (CDT%) a marker of chronic alcohol consumption, insulin and TNF-alpha. The Quicki insulin sensitivity index was calculated. Forty-eight individuals were found to be moderate drinkers and 27 subjects non-drinkers. Moderate drinkers had significantly higher concentrations of AN (13.8 +/- 3,7 versus 9.1 +/- 5.4 mg/l, means +/- SD, p = 0.012) compared with non-drinkers, independent of adiposity. Plasma AN concentrations in the whole group were positively correlated with TNF-alpha concentrations (r = 0.6; p = 0.0001), CDT (r = 0.26; p = 0.0084), AST/ALT index (r = 0.3, p = 0.009), AST (r = 0.29; p = 0.011) and GMT (r = 0.29; p = 0.011) and negatively with BMI (r = -0.48; p = 0.0002) and glycemia (r = -0.22; p = 0.049). The positive associations of AN with TNF-alpha (0.8; p = 0.001), CDT (0.55; p = 0.017), AST/ALT index (0.55; p = 0.019) and the negative correlation with glycemia (-0.35; p = 0.0158) were independent of BMI. Stratified according to alcohol intake, in moderate drinkers, a positive correlation was found between AN and TNF-alpha concentrations (r = 0.6, p = 0.0001, AST/ALT index (r = 0.34, p = 0.0295) whereas in non-drinkers no such correlations were found. The concentration of AN and BMI displayed a negative correlation in both drinker and nondrinker patients (r = -0.42, p = 0.01 and -0.61; p = 0.012, respectively). We concluded that plasma AN is higher in moderate drinkers compared to non-drinkers, even after correction for BMI. Drinkers suffering from liver steatosis were found to have a positive correlation between AN concentrations, laboratory markers of liver disease and TNF-alpha. Such correlation was absent in non-drinkers suffering from liver steatosis. This suggests that alcohol may modulate the inhibitory effect of TNF-alpha on AN production, and thus, increase its plasma concentrations.  相似文献   

12.
Testosterone administration increases growth hormone (GH) secretion and decreases the plasma leptin concentration in men. We evaluated the effect of increased GH secretion due to short-term testosterone treatment on leptin concentrations. Ten boys aged 14.8 +/- 0.2 (mean +/- SE) years with transient GH deficiency caused by pubertal delay were evaluated before and after (3 months) 4 intramuscular injections of 100 mg testosterone heptylate, given at 15-day intervals. The leptin concentration decreased from 5.4 +/- 1.3 to 3. 6 +/- 1.1 microgram/l (p < 0.001), despite a weight gain of 3.4 +/- 0.5 kg. There were significant increases in body mass index (BMI), from -0.2 +/- 0.5 to 0.2 +/- 0.5 SD, p < 0.005, in GH peak after stimulation test, from 6.3 +/- 0.5 to 21.7 +/- 2.9 microgram/l, p < 0. 0003, in plasma testosterone, from 0.6 +/- 0.1 to 6.5 +/- 1.3 microgram/l, p < 0.001, in insulin-like growth factor-I (IGF-I), from 152 +/- 21 to 330 +/- 30 microgram/l, p < 0.0001, and in IGF-binding protein-3 (IGFBP-3), from 4.2 +/- 0.5 to 5.4 +/- 0.4 mg/l, p < 0.01. But there were no changes in blood glucose (4.7 +/- 0.1 and 4.8 +/- 0.1 mmol/l), or plasma fasting insulin (9.0 +/- 1.2 and 8.1 +/- 1.3 mIU/l). The leptin concentrations were positively correlated with the BMI before (p < 0.03) and after (p < 0.04) testosterone, but not with the GH peak after stimulation, or with plasma testosterone, IGF-I or IGFBP-3. The leptin and insulin concentrations after testosterone treatment were positively correlated (p < 0.04). Thus, short-term testosterone treatment of boys with pubertal delay decreases their leptin concentrations. The lack of correlation with GH secretion or with its changes, despite the dramatic increase in GH secretion, and the lack of change in insulin are additional features suggesting that testosterone increases the leptin concentration mainly by an effect on adipose tissue.  相似文献   

13.
The aim of the current investigation was to determine the possible relationships of fasting adiponectin level with body composition, bone mineral, insulin sensitivity, leptin, and cardiorespiratory fitness parameters in 153 women. Subjects were classified as premenopausal (n = 42; 40.8 +/- 5.7 yr) if they had regular menstrual periods, early postmenopausal (n = 49; 56.7 +/- 3.6 yr) if they had been postmenopausal for more than >1 yr but <7 yr (5.5 +/- 1.3 yr), and postmenopausal (n = 62; 72.2 +/- 4.5 yr) if they had been postmenopausal for >7 yr. All women studied had a body mass index (BMI) <30 kg/m(2). Adiponectin values were higher (P < 0.05) in middle-aged (12.0 +/- 5.1 microg/ml) and older (15.3 +/- 7.3 microg/ml) postmenopausal women compared with middle-aged premenopausal women (8.4 +/- 3.2 microg/ml). Mean plasma adiponectin concentration in the total group of women (n = 153) was 12.2 +/- 6.3 microg/ml and was positively related (P < 0.05) to age, indexes of overall obesity (BMI, body fat mass), and cardiorespiratory fitness (PWC) values. In addition, a negative association (P < 0.05) between adiponectin with central obesity (waist-to-hip and waist-to-thigh ratio), fat-free mass, bone mineral (bone mineral content, total and lumbar spine bone mineral density), and leptin and insulin resistance (insulin, fasting insulin resistance index) values was observed. However, multivariate regression analysis revealed that only age, fasting insulin resistance index, and leptin were independent predictors of adiponectin concentration. In conclusion, circulating adiponectin concentrations increase with age in normal-weight middle-aged and older women. It appears that adiponectin is independently related to age, leptin, and insulin resistance values in women across the age span and menstrual status.  相似文献   

14.
Obesity in children is accompanied by increased circulating leptin concentrations. Girls have higher leptin concentrations than boys. The aim of our study was to compare serum leptin levels before and after a five-week weight reduction program and to study the relationship of leptin levels, serum total cholesterol, and androgens (testosterone, dehydroepiandrosterone, dehydroepiandrosterone sulphate) in 33 obese boys (age: 12.7+/-1.97 years, BMI: 30.46+/-4.54) and 66 obese girls (age: 12.7+/-2.51 years, BMI: 29.31+/-4.62). We found that serum leptin concentrations in obese children were significantly decreased after a weight reduction program (before 20.79+/-9.61 ng/ml, after 13.50+/-8.65 ng/ml in girls; before 12.25+/-10.09 ng/ml and after 5.18+/-3.56 ng/ml in boys, p<0.0001 in both genders). Leptin levels correlated positively with the body mass index before and after weight reduction. There was a positive association in obese boys and a negative one in obese girls between leptin levels and the WHR (waist to hip circumference ratio). Serum leptin also shows a strong relationship to fat distribution (p=0.02 in boys, p<0.0001 in girls). No significant correlation was found between leptin concentrations and total cholesterol or androgens. We confirmed that leptin is a sensitive parameter of body composition and weight reduction in obese children.  相似文献   

15.
The aim of our study was to determine whether adipocyte-derived hormones leptin, adiponectin and resistin contribute to the improvement of insulin sensitivity after very-low calorie diet (VLCD). Therefore, serum levels of these hormones were measured in fourteen obese females before and after three weeks VLCD and in seventeen age- and sex-matched healthy controls. Body mass index, HOMA index, serum insulin and leptin levels in obese women before VLCD were significantly higher than in control group (BMI 48.01+/-2.02 vs. 21.38+/-0.42 kg/m(2), HOMA 10.72+/-2.03 vs. 4.69+/-0.42, insulin 38.63+/-5.10 vs. 18.76+/-1.90 microIU/ml, leptin 77.87+/-8.98 vs. 8.82+/-1.52 ng/ml). In contrast, serum adiponectin and soluble leptin receptors levels were significantly lower in obese women before VLCD than in the control group. No differences were found in serum glucose and resistin levels between the obese group before VLCD and the control group. VLCD significantly decreased BMI, HOMA index, serum glucose, insulin and leptin levels and increased soluble leptin receptor levels. The changes in serum adiponectin and resistin levels in obese women after VLCD did not reach statistical significance. We conclude that leptin and soluble leptin receptor levels were affected by VLCD while adiponectin and resistin concentrations were not. Therefore, other mechanisms rather than changes in the endocrine function of the adipose tissue are probably involved in the VLCD-induced improvement of insulin sensitivity.  相似文献   

16.
The aim of the present study was to examine the relationship between adiponectin and the systemic inflammatory response in weight-losing patients with non-small cell lung cancer (NSCLC). Measurement of anthropometry, acute phase proteins, interleukin-6, leptin (total and free) and adiponectin were carried out on healthy subjects (n = 13) and non-small cell lung cancer patients with weight loss (n = 20). The groups were age and sex matched. Compared with the controls the cancer group had a lower BMI (p < 0.01), mid-upper arm circumference (p < 0.001), triceps skinfold thickness (p < 0.05) and circulating concentrations of albumin (p < 0.001), haemoglobin (p < 0.05), free and total leptin (p < 0.05) and adiponectin (p < 0.01). In contrast, the cancer group had elevated circulating concentrations of interleukin-6 and C-reactive protein concentrations (p < 0.001). In the cancer group circulating adiponectin concentrations were significantly inversely correlated with both free (rs = -0.675, p = 0.001) and total leptin concentrations (rs = -0.690, p = 0.001). However, neither weight loss, interleukin-6 or C-reactive protein concentrations were correlated with either adiponectin, free or total leptin concentrations in the cancer group. These results suggest that adipokine production is normal and is unlikely to play a major role in the abnormal fat metabolism in weight-losing cancer patients.  相似文献   

17.
Adipose tissue is a major source of inflammatory and thrombotic cytokines. This study investigated the relationship of abdominal subcutaneous adipose tissue cytokine gene expression to body composition, fat distribution, and metabolic risk during obesity. We determined body composition, abdominal fat distribution, plasma lipids, and abdominal subcutaneous fat gene expression of leptin, TNF-alpha, IL-6, PAI-1, and adiponectin in 20 obese, middle-aged women (BMI, 32.7 +/- 0.8 kg/m2; age, 57 +/- 1 yr). A subset of these women without diabetes (n = 15) also underwent an OGTT. In all women, visceral fat volume was negatively related to leptin (r = -0.46, P < 0.05) and tended to be negatively related to adiponectin (r = -0.38, P = 0.09) gene expression. Among the nondiabetic women, fasting insulin (r = 0.69, P < 0.01), 2-h insulin (r = 0.56, P < 0.05), and HOMA index (r = 0.59, P < 0.05) correlated positively with TNF-alpha gene expression; fasting insulin (r = 0.54, P < 0.05) was positively related to, and 2-h insulin (r = 0.49, P = 0.06) tended to be positively related to, IL-6 gene expression; and glucose area (r = -0.56, P < 0.05) was negatively related to, and insulin area (r = -0.49, P = 0.06) tended to be negatively related to, adiponectin gene expression. Also, adiponectin gene expression was significantly lower in women with vs. without the metabolic syndrome (adiponectin-beta-actin ratio, 2.26 +/- 0.46 vs. 3.31 +/- 0.33, P < 0.05). We conclude that abdominal subcutaneous adipose tissue expression of inflammatory cytokines is a potential mechanism linking obesity with its metabolic comorbidities.  相似文献   

18.
We have investigated the effects of maternal undernutrition during late gestation on maternal and fetal plasma concentrations of leptin and on leptin gene expression in fetal perirenal adipose tissue. Pregnant ewes were randomly assigned at 115 days of gestation (term = 147 +/- 3 days [mean +/- SEM]) to either a control group (n = 13) or an undernourished group (n = 16) that received approximately 50% of the control diet until 144-147 days of gestation. Maternal plasma glucose, but not leptin, concentrations were lower in the undernourished ewes. A significant correlation was found, however, between mean maternal plasma leptin (y) and glucose (x) concentrations (y = 2.9x - 2.4; r = 0.51, P < 0.02) when the control and undernourished groups were combined. Fetal plasma glucose and insulin, but not fetal leptin, concentrations were lower in the undernourished ewes, and no correlation was found between mean fetal leptin concentrations and either mean fetal glucose or insulin concentrations. A positive relationship, however, was found between mean fetal (y) and maternal (x) plasma leptin concentrations (y = 0.18x + 0.45; r = 0.66, P < 0.003). No significant difference was found in the relative abundance of leptin mRNA in fetal perirenal fat between the undernourished (0.60 +/- 0.09, n = 10) and control (0.70 +/- 0.08, n = 10) groups. Fetal plasma concentrations of leptin (y) and leptin mRNA levels (x) in perirenal adipose tissue were significantly correlated (y = 1.5x +/- 0.3; r = 0.69, P < 0.05). In summary, the capacity of leptin to act as a signal of moderate maternal undernutrition may be limited before birth in the sheep.  相似文献   

19.
AIM: As the link between body fat and leptin is well known, the aim of the study was to seek for secondary regulators of plasma leptin level. PATIENTS: 86 women (mean: age 47.0+/-14.3 years; estradiol 50.0+/-60.6 ng/l; FSH 52.4+/-42.9 IU/l; BMI 26.9+/-5.9) divided into three groups according to their BMI. Group A: 39 normal weight women (mean: age 44.4+/-16.0 years; estradiol 69.6+/-79.8 ng/l; FSH 50.4+/-47.7 IU/l; BMI 22.9+/-1.3). Group B: 27 overweighted women (mean: age 55.0+/-6.4 years; estradiol 25.1+/-17.2 ng/l; FSH 75.6+/-26.3 IU/l; BMI 27.7+/-1.6). Group C: 21 obese women with mean: age 48.7+/-12.2 years; estradiol 36.9+/-44.0 ng/l; FSH 42.3+/-36.6 IU/l and BMI 34.6+/-4.9. METHODS: Standard clinical evaluation and hormone evaluation (LH, FSH, prolactin, estradiol, leptin, insulin-like growth factor-I (IGF-I), human growth hormone (hGH), insulin-like growth factor binding protein-3 (IGFBP-3), insulin, dihydroepiandrosterone sulphate (DHEAS), sex hormone binding globin (SHBG) and testosterone were done in basic condition which levels of were measured by RIA kits. Statistical analysis. Shapiro-Wilk test, Mann-Whitney-Wilcoxon u test, Spearman rank correlation coefficient and stepwise multiple regression: p values of 0.05 or less were considered as significant. RESULTS: Taking all women into account (n=86) the plasma leptin level correlated directly with age (r=0.32; p<0.02), body mass (r=0.60; p<0.001), BMI (r=0.71; p<0.001) as well as inversely with estradiol (r=-0.21; p<0.05), IGF-I (r=-0.24; p<0.05), SHBG (r=-0.34; p<0.01) and DHEAS (r=-0.30; p<0.01). However only in the group B leptin/age relation remained (r=0.40; p<0.05) after the division according to BMI. In the group B the leptin /DHEAS (r=-0.40; p<0.05) and leptin/PRL (r=0.51; p<0.05) links were also present. In the group C the leptin/SHGB relation (r=-0.56; p<0.02) only remained and an association between insulin and leptin was found (r=0.48; p<0.05). The body mass and BMI relation to age were again present only in all 86 women (r=0.30; p<0.002: r=0.36; p<0.001 resp.). Having split the women into groups, these links either disappeared or became inverse (rC=-0.39; p<0.05). Taking into consideration age/leptin relation in all women, the division according to the menopausal status revealed the direct relation in premenopausal women (n=29; r=0.43; p<0.02) and a reverse one in postmenopausal women (n=38; r=-0.32; p<0.05). The plasma leptin level was the highest (p<0.001) in group C (23.2+/-10.4 microg/l) and the lowest was found in the group A (8.9+/-4.1 microg/l). That corresponded with the differences in mean body mass index and mean body mass. The stepwise multiple regression revealed that body mass index accounted for 31% (p<0.001) and plasma SHBG level accounted for 17.7% (p<0.02) of plasma leptin variance in all women. In the group A body mass and age together accounted for 61% (p<0.01) and estradiol alone accounted for 44% (p<0.02) of plasma leptin variance. In the group B insulin alone accounted for 39% (p<0.05) and together with testosterone accounted for 46% (p<0.05) of plasma leptin variance. Finally in obese women none of the evaluated parameters significantly accounted for leptin variance. CONCLUSION: The results presented in this paper confirmed the strong influence of body fat mass on serum leptin concentration. However insulin, SHBG, sex steroids as well as age may also exert secondary influence on plasma leptin level in certain groups of women.  相似文献   

20.
Plasma leptin concentration is directly related to the degree of obesity and is higher in women than in men of the same body mass index (BMI). We hypothesized that fasting plasma leptin concentrations and the response of leptin to weight loss would differ in older men and women of a similar fat mass. Plasma leptin concentrations (radioimmunoassay) and fat mass (DXA) were measured in 47 older, obese (BMI=30 ± 4 kg/m2) women and 23 older, obese (BMI=31 ± 3 kg/m2) men after a 2 to 4 week period of weight and dietary stabilization, and then in 22 of the women and 18 of the men after a 6-month weight loss intervention (250–350 kcal/d deficit). Leptin correlated with fat mass in men and women (r=0.75 and r=0.77, respectively; p values<0.0001), but women had 3-fold higher leptin levels for a given fat mass than men (p=0.01). In response to the 6-month hypocaloric diet, men and women lost a similar percentage of fat mass (?13% and ?16%, respectively), but the relative decline in circulating leptin was greater in women than men (-45% and ?21%, respectively; p<0.0001). In addition, when leptin was normalized for fat mass using the ratio method, the decrease in leptin per kilogram of fat mass was greater in women than men (-0.37 ± 0.34 vs. ?0.04 ± 0.06 ng/mL/kg; p<0.01). After weight loss, the change in leptin concentrations correlated positively with the change in fat mass in men (r=0.60; p<0.01), but not in women (r=0.31; p=0.17). Furthermore, the loss in fat mass correlated negatively with baseline leptin levels in women (r=-0.47; p<0.05), but not in men (r=0.03, p=NS). These results indicate that the decline in leptin concentration with weight loss correlates with the loss in fat mass in men; but, in women, other factors affect the decrease in leptin concentration. This suggests that the role of leptin in the regulation of obesity is gender-specific and may account for gender differences in response to hypocaloric treatment and maintenance of lost weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号