首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The cspD gene of Escherichia coli encodes a protein of high sequence similarity with the cold shock protein CspA, but cspD expression is not induced by cold shock. In this study, we analyzed the regulation of cspD gene expression. By using a cspD-lacZ fusion and primer extension analysis, the expression of cspD was found to be dramatically induced by stationary-phase growth. However, this induction does not depend on the stationary-phase sigma factor sigmaS. Moreover, the expression of cspD is inversely dependent on growth rates and induced upon glucose starvation. Using a (p)ppGpp-depleted strain, we found that (p)ppGpp is one of the positive factors for the regulation of cspD expression.  相似文献   

3.
4.
CspA, CspB, and CspG, the major cold shock proteins of Escherichia coli, are dramatically induced upon temperature downshift. In this report, we examined the effects of kanamycin and chloramphenicol, inhibitors of protein synthesis, on cold shock inducibility of these proteins. Cell growth was completely blocked at 37 degrees C in the presence of kanamycin (100 microgram/ml) or chloramphenicol (200 microgram/ml). After 10 min of incubation with the antibiotics at 37 degrees C, cells were cold shocked at 15 degrees C and labeled with [35S]methionine at 30 min after the cold shock. Surprisingly, the synthesis of all these cold shock proteins was induced at a significantly high level virtually in the absence of synthesis of any other protein, indicating that the cold shock proteins are able to bypass the inhibitory effect of the antibiotics. Possible bypass mechanisms are discussed. The levels of cspA and cspB mRNAs for the first hour at 15 degrees C were hardly affected in the absence of new protein synthesis caused either by antibiotics or by amino acid starvation.  相似文献   

5.
The family of bacterial major cold shock proteins is characterized by a conserved sequence of 65-75 amino acid residues long which form a three-dimensional structure consisting of five beta-sheets arranged into a beta-barrel topology. CspA from Escherichia coli and CspB from Bacillus subtilis are typical representative members of this class of proteins. The exact biological role of these proteins is still unclear; however, they have been implicated to possess ssDNA-binding activity. In this paper, we report the results of a comparative quantitative analysis of ssDNA-binding activity of CspA and CspB. We show that in spite of high homology on the level of primary structure and very similar three-dimensional structures, CspA and CspB have different ssDNA-binding properties. Both proteins preferentially bind polypyrimidine ssDNA templates, but CspB binds to the T-based templates with one order of magnitude higher affinity than to U- or C-based ssDNA, whereas CspA binds T-, U- or C-based ssDNA with comparable affinity. They also show similarities and differences in their binding to ssDNA at high ionic strength. The results of these findings are related to the chemical structure of DNA bases.  相似文献   

6.
7.
8.
Alcohols protect Escherichia coli against cold shock   总被引:1,自引:0,他引:1  
Alcohols protect Escherichia coli against cold shock, and the concentration of alcohol which provided optimal protection declined with increasing hydrophobicity of the alcohol. The rate of loss of viability after the chilling transition was decreased by n-octanol, even when it was added after that chilling transition. Cold-shocked cells exhibited a sensitivity toward dioxygen, seen as greater enumeration on anaerobic, rather than on aerobic, trypticase-yeast extract agar plates, and addition of catalase or antioxidants, such as alpha-tocopherol or probucol, to the agar plates did not lessen this dioxygen sensitivity. Respiratory capacity was diminished by cold shock, and cyanide-sensitive respiration was more affected than was cyanide-resistant respiration. Discharging the proton gradient, with the uncoupler carbonyl cyanide trifluoromethoxy-phenylhydrazone, did not change sensitivity to cold shock. There was no evidence for minimal medium recovery after cold shock. The data presented, as well as that already in the literature, are explained on the basis of membrane damage caused by patches of ordering transitions in one membrane leaflet, unmatched by comparable transitions in the mating leaflet.  相似文献   

9.
10.
11.
The TorD family of specific chaperones is divided into four subfamilies dedicated to molybdoenzyme biogenesis and a fifth one, exemplified by YcdY of Escherichia coli, for which no defined partner has been identified so far. We propose that YcdY is the chaperone of YcdX, a zinc protein involved in the swarming motility process of E. coli, since YcdY interacts with YcdX and increases its activity in vitro.  相似文献   

12.
13.
Omp85 proteins form a ubiquitous protein family, members of which are found in all Gram-negative bacteria. Omp85 of Neisseria meningitidis and YaeT of Escherichia coli are shown to be essential for outer membrane biogenesis. Interestingly, there exists a homologue to YaeT in E. coli and many proteobacteria, denoted YtfM, the function of which has not been described yet. Like YaeT, YtfM is predicted to consist of an amino-terminal periplasmic domain and a membrane-located carboxy-terminal domain. In this study, we present a first characterisation of YtfM by comparison to YaeT concerning structural, biochemical and electrophysiological properties. Furthermore, a knockout strain revealed that ytfM is a non-essential gene and lack of the protein had no effect on outer membrane composition and integrity. The only observable phenotype was strongly reduced growth, indicating an important role of YtfM in vivo.  相似文献   

14.
15.
Neisseria cuniculi produces the restriction enzyme NcuI which is an isoschizomer of MboII. We have demonstrated that NcuI recognizes a pentanucleotide sequence (5'-GAAGA-3'/3'-CTTCT-5'), and cleaves the DNA 8 and 7 nucleotides downstream from the recognition site leaving a single 3'-protruding nucleotide. We have purified this enzyme to electrophoretic homogeneity using a four-step chromatographic procedure. NcuI endonuclease is a monomeric protein with a M(r)=48,000+/-1000 under denaturing conditions. The properties of NcuI are consistent with those for MboII, the position of the cleavage site being identical and the pH profile and divalent cation requirements being similar. Moreover, NcuI cross-reacts strongly with anti-MboII serum suggesting the presence of similar antigenic determinants. We have determined the sequence of 20 N-terminal amino acids for NcuI and concluded that this sequence is identical to the N-terminal portion of the MboII enzyme.  相似文献   

16.
A regulatory gene, cynR, was found to be located next to the cyn operon but transcribed in the opposite direction. cynR encodes a positive regulatory protein that controls the cyn operon as well as its own synthesis. Positive regulation of the cyn operon requires cyanate and the cynR protein, but the negative autoregulation of the cynR gene appears to be independent of cyanate. The predicted amino acid sequence of the cynR protein derived from the DNA sequence was found to have significant homology to the predicted amino acid sequence of the lysR family of regulatory proteins.  相似文献   

17.
The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins.  相似文献   

18.
19.
The solution structure of the ribosome-associated cold shock response protein Yfia of Escherichia coli was determined by nuclear magnetic resonance with a RMSD of 0.6A. Yfia shows a global beta-alpha-beta-beta-beta-alpha folding topology similar to its homologue HI0257 of Haemophilus influenzae and the double-strand-binding domain of Drosophila Staufen protein. Yfia and HI0257 differ in their surface charges and in the composition of their flexible C-termini, indicating their specificity to different target molecules. Both proteins exhibit a hydrophobic and polar region, which probably functions as interaction site for protein complex formation. Despite their similarity to the dsRBD fold, Yfia does not bind to model fragments of 16S ribosomal RNA as determined by NMR titration and gel shift experiments.  相似文献   

20.
Although beta-sheets represent a sizable fraction of the secondary structure found in proteins, the forces guiding the formation of beta-sheets are still not well understood. Here we examine the folding of a small, all beta-sheet protein, the E. coli major cold shock protein CspA, using both equilibrium and kinetic methods. The equilibrium denaturation of CspA is reversible and displays a single transition between folded and unfolded states. The kinetic traces of the unfolding and refolding of CspA studied by stopped-flow fluorescence spectroscopy are monoexponential and thus also consistent with a two-state model. In the absence of denaturant, CspA refolds very fast with a time constant of 5 ms. The unfolding of CspA is also rapid, and at urea concentrations above the denaturation midpoint, the rate of unfolding is largely independent of urea concentration. This suggests that the transition state ensemble more closely resembles the native state in terms of solvent accessibility than the denatured state. Based on the model of a compact transition state and on an unusual structural feature of CspA, a solvent-exposed cluster of aromatic side chains, we propose a novel folding mechanism for CspA. We have also investigated the possible complications that may arise from attaching polyhistidine affinity tags to the carboxy and amino termini of CspA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号