首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-Transnitrosation is an important bioregulatory process whereby NO(+) equivalents are transferred between S-nitrosothiols and Cys of target proteins. This reaction proceeds through a common intermediate R-S-N(O(-))-S-R' and it has been proposed that products different from S-nitrosothiols may be formed in protein cavities. Recently, we have reported on the formation of such a product, an N-thiosulfoximide, at the active site of the Cys hydrolase dimethylargininase-1 (DDAH-1) upon reaction with S-nitroso-l-homocysteine (HcyNO). Here we have addressed the question of whether this novel product can also be formed with the endogenously occurring S-nitrosothiols S-nitroso-l-cysteine (CysNO) and S-nitrosoglutathione (GSNO). Further, to explore the reason responsible for the unique formation of an N-thiosulfoximide in DDAH-1 we have expanded these studies to cytidine triphosphate synthetase (CTPS), which shows a similar active site architecture. ESI-MS and activity measurements showed that the bulky GSNO does not react with both enzymes. In contrast, S-nitrosylation of the active site Cys occurred in DDAH-1 with CysNO and in CTPS with CysNO and HcyNO. Although kinetic analysis indicated that these compounds act as specific irreversible inhibitors, no N-thiosulfoximide was formed. The reasons likely responsible for the absence of the N-thiosulfoximide formation are discussed using molecular models of DDAH-1 and CTPS. In tissue extracts DDAH was inhibited only by HcyNO, with an IC(50) value similar to that of the isolated protein. Biological implications of these studies for the function of both enzymes are discussed.  相似文献   

2.
S-Nitrosocysteine (CysNO) releases either NO (in the presence of divalent cations) or NO+ (in the presence of chelating agents). NO+ is then transferred to peptides or protein SH groups to form high-mass nitrosothiols. The aim of this work was the development of a specific reaction between thiocyanate (SCN-) and CysNO. This reaction selectively liberates NO from CysNO in the presence of high-mass nitrosothiols. Free NO is measured with an amperometric sensor. We examine with this system the transnitrosylation reaction between CysNO and BSA at low molecular ratios and could assay nitrites, SNO-BSA, and CysNO in the incubation mixture without any preliminary purification steps.  相似文献   

3.
Glycolysis and pentose phosphate pathway (PPP) in red blood cell (RBC) are modulated by the cell oxygenation state. This metabolic modulation is connected to variations in intracellular nicotinamide adenine dinucleotide phosphate‐reduced form (NADPH) and adenosine triphosphate (ATP) levels as a function of the oxygenation state of the cell, and, consequently, it should have physiologic relevance. In the present study, we analysed the effects of amyloid beta peptide (1–42) (Abeta) on RBC metabolism and its relationship with the activity of protein kinase C (PKC). Our results showed that metabolic response to Abeta depended on the degree of cell oxygenation. In particular, under high O2 pressure, in Abeta‐treated RBC, glucose metabolized through PPP approached that metabolized by RBC under low O2 pressure, differently to that observed in untreated cells. The effect of Abeta on RBC metabolism was paralleled by increase in PKC enzyme activity, but cytosolic Ca2+ concentration does not seem to be involved in this mechanism. Incubation of Abeta‐treated RBC with a specific inhibitor of PKC partially restores PPP flux. A possible rationalization of the different metabolic behaviours shown by RBC following Abeta treatment is proposed. It takes into account the known post‐translational modifications to cytoskeleton proteins induced by PKC. The reduction in PPP flux may lead to a weakened defence system of antioxidant reserve in RBC, becoming a source of reactive species, and, consequently, its typical, structural and functional features are lost. Therefore, oxidative stress may outflow from the RBC and trigger damage events in adjacent cells and tissue, thus contributing to vascular damage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
By adopting biotin switch method, we recently reported that liver microsomal glutathione transferase 1 (MGST1) might not be a protein target for S-nitrosylation in rat microsomes or in vivo. However, alternative analytic methods are needed to confirm this observation, as a single biotin switch method in judging specific protein S-nitrosylation in biological samples is increasingly recognized as insufficient, or even unreliable. Besides, only MGST1 localized on endoplasmic reticulum (ER), but not mitochondria which favors protein S-nitrosylation was examined in the previous report. Present study was therefore carried out to address these issues. Primary cultured hepatocytes were used. A physiological existing nitric oxide (NO) donor S-nitrosoglutathione (GSNO) was adopted to trigger protein S-nitrosylation. MGST1 was immunoprecipitated and its S-nitrosothiol content was measured by the NO probe 2,3-diaminonaphthalene. In parallel, S-nitrosylated proteins were immunoprecipitated by a monoclonal anti-S-nitrosocysteine antibody and probed with an anti-MGST1 antibody. In hepatocytes, neither ER nor mitochondria were found to contain S-nitrosylated MGST1 after GSNO treatment, showing that differently distributed MGST1 was consistently un-nitrosylable in the cellular environment. But under broken cell conditions, when samples were incubated directly with GSNO, MGST1 S-nitrosylation was indeed detectable in both the microsomal and mitochondrial proteins, indicating that previous failure in detecting MGST1 S-nitrosylation in microsomes is due to the limitations of biotin switch method. These results clearly, if not definitely, demonstrate that MGST1 is not a ready candidate for S-nitrosylation in the cellular content, despite its susceptibility to S-nitrosylation under broken cell conditions.  相似文献   

5.
S-Nitrosoglutathione (GSNO) is an endogenous bronchodilator levels of which are reduced in the airways of cystic fibrosis (CF) patients. GSNO has recently been shown to increase maturation of CFTR in CF cell lines at physiological concentrations. The ability of S-nitrosoglutathione to direct the DeltaF508-CFTR to the plasma membrane and restore the function of the cAMP-dependent chloride transport in cultured human airway epithelial cells has been studied. Immunocytochemistry showed a time- and dose-dependent increase of apically located CFTR after GSNO treatment. Chloride transport studies with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) showed that GSNO was able to induce a fourfold increase of cAMP-dependent chloride transport. Our data and the fact that endogenous GSNO levels are lower in the airways of CF patients make GSNO an interesting candidate for pharmacological treatment of cystic fibrosis.  相似文献   

6.
Nitric oxide inhibits ornithine decarboxylase by S-nitrosylation.   总被引:5,自引:0,他引:5  
Ornithine decarboxylase (ODC) is the initial enzyme in the polyamine synthetic pathway, and polyamines are required for cell proliferation. We have shown previously that nitric oxide (NO) inhibits ODC activity in Caco-2 cells and in crude cell lysate preparations. In this study we examined the mechanism by which NO inhibits the activity of purified ODC. NO, in the form of S-nitrosocysteine (CysNO), S-nitrosoglutathione (GSNO), or 1, 1-diethyl-2-hydroxy-2-nitroso-hydrazine (DEA/NO), inhibited enzyme activity in a concentration-dependent manner. CysNO (1 microM) inhibited ODC activity by approximately 90% and 3 microM GSNO by more than 70%. DEA/NO was less potent, inhibiting enzyme activity by 70% at a concentration of 30 microM. Inhibition of enzyme activity by CysNO, GSNO, or DEA/NO was reversible by addition of dithiothreitol or glutathione. Cuprous ion (Cu (I)) also reversed the inhibitory effect of these NO donor agents. The data presented here support the hypothesis that NO inhibits ODC activity via S-nitrosylation of a critical cysteine residue(s) on ODC.  相似文献   

7.
Rats were injected with59Fe-ferrous citrate and bled thereafter at different times (16 h to 49 d). This gave rise to red cell populations in which cells corresponding in age to the time elapsed between injection and bleeding were labeled. The anticoagulant used was either acid-citrate-dextrose (ACD) with a pH adjusted to 7.3 or ACD (pH 5.1). Final pH of the collected blood was about 7.2–7.4 in the former case and 6.4–6.7 in the latter. Red cells were then centrifuged (5) and approximately 7–10% of the packed cells from the top and 7–10% from the bottom of the cell column collected. When reticulocytes are the predominant labeled red cell population, as in blood obtained for about 24 h after isotope injection, a fractionation of these cells and mature erythrocytes is in evidence only when blood is collected at the higher pH. Thus, at pH 7.2–7.4 ratios of specific radioactivities of cells in top fraction/cells in an unfractionated sample are about 3, whereas at pH 6.4–6.7, the analogous ratios are 1 or less. These differences in specific activity ratios, as a function of pH at collection, virtually disappear after about 4 d following isotope injection. The lower pH is known to increase the volume and decrease the density of mature red blood cells. The marked effect of pH on cellular fractionation could be correlated with the smaller change in rat reticulocyte density and volume in acid medium. At pH 6.4–6.7, the densities of mature erythrocytes and reticulocytes are so close that their physical separation by centrifugation is not feasible.  相似文献   

8.
In the present work, the destructive effects of the 4-nonylphenol on one of the most economically important Nile fishes, namely African catfish (Clarias gariepinus) were studied. Apoptosis, erythrocytes alterations, micronucleus test and blood parameters count were used as biological indicators to detect those effects. After exposure to sublethal concentrations of 4-nonylphenol (0, 0.05, 0.08 and 0.1 mg/l), apoptotic red blood cells with many malformations and micronucleated erythrocytes were recorded. Decrease in the blood parameters such as red blood cells (RBCs), hemoglobin (Hb), package cell volume (PCV), mean corpuscular hemoglobin concentration (MCHC), platelets, white blood cells (WBCs), lymphocytes, basophils, monocytes and increase in mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), neutrophils, eosinophils indicated the negative effects of 4-nonylphenol. It was concluded that, the 4-nonylphenol caused genotoxicity in erythrocytes with many malformations in shape and number indicated with other blood parameters.  相似文献   

9.
Defense against malaria depends upon amplification of the spleen structure and function for the clearance of parasitized red blood cells (pRBC). We studied the distribution and amount of CD34+ cells in the spleens of mice infected with rodent malaria. We sought to identify these cells in the spleen and determine their relationship to infection. C57BL/6J mice were infected with self-resolving, Plasmodium chabaudi CR, or one of the lethal rodent malaria strains, P. chabaudi AJ and P. berghei ANKA. We then recorded parasitemia, mortality, and the presence of CD34+ cells in spleen, as determined by immunohistochemistry and flow cytometry. In the non-lethal strain, the spleen structure was maintained during amplification, but disrupted in lethal models. The abundance of CD34+ cells increased in the red pulp on the 4th and 6th days p.i. in all models, and subsided on the 8th day p.i. Faint CD34+ staining on the 8th day p.i., was probably due to differentiation of committed cell lineages. In this work, increase of spleen CD34+ cells did not correlate with infection control.  相似文献   

10.
S-Nitrosoglutathione (GSNO) is a nitric oxide (NO) donor compound which has been postulated to be involved in transport of NO in vivo. It is known that γ-glutamyl transpeptidase (GGT) is one of the enzymes involved in the enzyme-mediated decomposition of GSNO, but no kinetics studies of the reaction GSNO-GGT are reported in literature.In this study we directly investigated the kinetics of GGT with respect to GSNO as a substrate and glycyl-glycine (GG) as acceptor co-substrate by spectrophotometry at 334 nm. GGT hydrolyses the γ-glutamyl moiety of GSNO to give S-nitroso-cysteinylglycine (CGNO) and γ-glutamyl-GG. However, as both the substrate GSNO and the first product CGNO absorb at 334 nm, we optimized an ancillary reaction coupled to the enzymatic reaction, based on the copper-mediated decomposition of CGNO yielding oxidized cysteinyl-glycine and NO. The ancillary reaction allowed us to study directly the GSNO/GGT kinetics by following the decrease of the characteristic absorbance of nitrosothiols at 334 nm. A Km of GGT for GSNO of 0.398 ± 31 mM was thus found, comparable with Km values reported for other γ-glutamyl substrates of GGT.  相似文献   

11.
Under nitrosative stressed condition intracellular GSNO accumulation is common to all cell types. Conserved NADH-dependent GSNO reductase was reported previously as an important cellular protective measure against this. In spite of the constitutive nature of the enzyme, we observed in vivo inactivation of two important enzymes-glyoxalase-I and glyceraldehyde-3-phosphate dehydrogenase under 5 mM GSNO stress in two budding yeasts, though with difference in their sensitivity. Former was more susceptible to inactivation in in vitro condition, too. In this study, we explored the competitive nature of yeast glyoxalase-I inhibition by GSNO. GSNO actually competes with GSH substrate-binding site of the enzyme.  相似文献   

12.
S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD+ as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD+, the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD+ and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids.  相似文献   

13.
Abnormalities in physical properties of the cell membranes may underlie the defects that are strongly linked to hypertension, stroke, and other cardiovascular diseases. Recently, there has been an indication that leptin, the product of the human obesity gene, actively participates not only in the metabolic regulations but also in the control of cardiovascular functions. In the present study, to assess the role of leptin in the regulation of membrane properties, the effects of leptin on membrane fluidity of erythrocytes in humans are examined. The membrane fluidity of erythrocytes in healthy volunteers by means of an electron paramagnetic resonance (EPR) and spin-labeling method is determined. In an in vitro study, leptin decreased the order parameter (S) for 5-nitroxide stearate (5-NS) and the peak height ratio (ho/h-1) for 16-NS obtained from EPR spectra of erythrocyte membranes in a dose-dependent manner in healthy volunteers. The finding indicated that leptin increased the membrane fluidity and improved the microviscosity of erythrocytes. The effect of leptin on the membrane fluidity was significantly potentiated by the nitric oxide (NO) donors, L-arginine and S-nitroso-N-acetylpenicillamine (SNAP), and a cyclic guanosine monophosphate (cGMP) analog, 8-bromo-cGMP. In contrast, the change evoked by leptin was significantly attenuated in the presence of the NO synthase inhibitors, N(G)-nitro-L-arginine-methyl-ester (L-NAME) and asymmetric dimethyl-L-arginine (ADMA). The results of the present study showed that leptin increased the membrane fluidity and improved the rigidity of cell membranes to some extent via an NO- and cGMP-dependent mechanism. Furthermore, the data also suggest that leptin might have a crucial role in the regulation of rheological behavior of erythrocytes and microcirculation in humans.  相似文献   

14.
The relative abundances and rates of formation of particular isotopic isomers (isotopomers) of metabolic intermediates from 13C-labelled substrates in living cells provide information on the routes taken by the initial 13C-atoms. When a primary substrate such as [U,13C] d-glucose is added to human erythrocytes, the pattern of labels in terminal metabolites is determined by a set of carbon-group exchange reactions in both glycolysis and the pentose phosphate pathway (PPP). Of a given terminal metabolite, not all possible isotopomers will be produced from each possible primary substrate isotopomer.There are only 8 different 13C-isotopomers of lactate but not all of these are produced when one of the 64 possible 13C-isotopomers of glucose is used as the input substrate; thus a subset of all 63 glucose isotopomers×8 lactate isotopomers+1 unlabelled glucose×1 unlabelled lactate=505 pattern associations, would be produced if a complete experimental analysis were performed with all the glucose variants. The pattern of labelling in this isotopomer subspace reflects the nature of the re-ordering reactions that ‘direct’ the metabolism. Predicting the combinatorial rearrangements for particular sets of reactions and comparing these with real data should enable conclusions to be drawn about which enzymes are involved in the real metabolic system. An example of the glycolysis-PPP system is discussed in the context of a debate that occurred around the F- and L-type PPPs and which one actually operates in the human RBC. As part of this discussion we introduce the term ‘combinatorial deficit’ of all possible isotopomers and we show that this deficit is less for the F- than the L-type pathway.  相似文献   

15.
16.
Current (13)C labeling experiments for metabolic flux analysis (MFA) are mostly limited by either the requirement of isotopic steady state or the extremely high computational effort due to the size and complexity of large metabolic networks. The presented novel approach circumvents these limitations by applying the isotopic non-stationary approach to a local metabolic network. The procedure is demonstrated in a study of the pentose phosphate pathway (PPP) split-ratio of Penicillium chrysogenum in a penicillin-G producing chemostat-culture grown aerobically at a dilution rate of 0.06h(-1) on glucose, using a tracer amount of uniformly labeled [U-(13)C(6)] gluconate. The rate of labeling inflow can be controlled by using different cell densities and/or different fractions of the labeled tracer in the feed. Due to the simplicity of the local metabolic network structure around the 6-phosphogluconate (6pg) node, only three metabolites need to be measured for the pool size and isotopomer distribution. Furthermore, the mathematical modeling of isotopomer distributions for the flux estimation has been reduced from large scale differential equations to algebraic equations. Under the studied cultivation condition, the estimated split-ratio (41.2+/-0.6%) using the novel approach, shows statistically no difference with the split-ratio obtained from the originally proposed isotopic stationary gluconate tracing method.  相似文献   

17.
Nitric oxide (NO) has been reported to modulate the oxygen affinity of blood from sickle cell patients (SS), but not that of normal adult blood (AA), with little or no heme oxidation. However, we had found that the NO donor compounds 2-(N, N-diethylamino)-diazenolate-2-oxide (DEANO) and S-nitrosocysteine (CysNO) caused increased oxygen affinity of red cells from both AA and SS individuals and also caused significant methemoglobin (metHb) formation. Rapid kinetic experiments in which HbA(0), AA, or SS erythrocytes were mixed with CysNO or DEANO showed biphasic time courses indicative of initial heme oxidation followed by reductive heme nitrosylation, respectively. Hemolysates treated with CysNO showed by electrospray mass spectrometry a peak corresponding to a 29 mass unit increase (consistent with NO binding) of both the beta(A) and beta(S) chains but not of the alpha chains. Therapeutic use of NO in sickle cell disease may ultimately require further optimization of these competing reactions, i.e., heme reactivity (nitrosylation or oxidation) versus direct S-nitrosation of hemoglobin on the beta-globin.  相似文献   

18.
S-Nitrosoglutathione reductase (GSNOR) is a member of the alcohol dehydrogenase family (ADH) that regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). GSNO and SNOs are implicated in the pathogenesis of many diseases including those in respiratory, cardiovascular, and gastrointestinal systems. The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious GSNOR inhibitor which is currently undergoing clinical development. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on scaffold modification and propionic acid replacement. We identified equally potent and novel GSNOR inhibitors having pyrrole regioisomers as scaffolds using a structure based approach.  相似文献   

19.
The production of fully functional human red cells in vitro from haematopoietic stem cells (hHSCs) has been successfully achieved. Recently, the use of hHSCs from cord blood represented a major improvement to develop the continuous culture system for Plasmodium vivax. Here, we demonstrated that CD34+hHSCs from peripheral blood and bone marrow can be expanded and differentiated to reticulocytes using a novel stromal cell. Moreover, these reticulocytes and mature red blood cells express surface markers for entrance of malaria parasites contain adult haemoglobin and are also permissive to invasion by P. vivax and Plasmodium falciparum parasites.  相似文献   

20.
The rotating frame nuclear magnetic resonance relaxation rate R(1rho) in the blood and cell lysate was studied at 4.7T to provide reference values for in vivo modeling and to address the mechanisms contributing to net relaxation. A strong dependence on oxygenation, hematocrit, and spin lock field strength B(1) (0.2-1.6G) was observed in whole blood, whereas in lysate the effects were severely attenuated. The results were further compared to transverse relaxation rate R(2). A good agreement in low-field asymptotes of these two relaxation rates was found. R(1rho) field dispersion was fitted to Lorenzian line shape and resulted in correlation times around 40 micros. The dispersion behavior was related to motional properties of intracellular hemoglobin and effects of susceptibility shift interface across the cell membrane induced by compartmentalization of Hb into cells in blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号