首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-chain α,ω-dicarboxylic acids (DCAs) are versatile chemical intermediates of industrial importance used as building blocks for the production of polymers, lubricants, or adhesives. The majority of industrial long-chain DCAs is produced from petro-chemical resources. An alternative is their biotechnological production from renewable materials like plant oil fatty acids by microbial fermentation using oleogenious yeasts. Oleogenious yeasts are natural long-chain DCA producers, which have to be genetically engineered for high-yield DCA production. Although, some commercialized fermentation processes using engineered yeasts are reported, bio-based long-chain DCAs are still far from being a mass product. Further progress in bioprocess engineering and rational strain design is necessary to advance their further commercialization. The present article reviews the basic strategies, as well as novel approaches in the strain design of oleogenious yeasts, such as the combination of traditional metabolic engineering with system biology strategies for high-yield long-chain DCA production. Therefore a detailed overview of the involved metabolic processes for the biochemical long-chain DCA synthesis is given.  相似文献   

2.
In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.  相似文献   

3.
Yeasts in foods and beverages: impact on product quality and safety   总被引:2,自引:0,他引:2  
The role of yeasts in food and beverage production extends beyond the well-known bread, beer and wine fermentations. Molecular analytical technologies have led to a major revision of yeast taxonomy, and have facilitated the ecological study of yeasts in many other products. The mechanisms by which yeasts grow in these ecosystems and impact on product quality can now be studied at the level of gene expression. Their growth and metabolic activities are moderated by a network of strain and species interactions, including interactions with bacteria and other fungi. Some yeasts have been developed as agents for the biocontrol of food spoilage fungi, and others are being considered as novel probiotic organisms. The association of yeasts with opportunistic infections and other adverse responses in humans raises new issues in the field of food safety.  相似文献   

4.
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug–target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.  相似文献   

5.
AIMS: The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. METHODS AND RESULTS: Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of beta-glycosidase. CONCLUSION: The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non-Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions.  相似文献   

6.
Emerging applications of the methylotrophic yeasts   总被引:8,自引:0,他引:8  
The use of methylotrophic yeasts for the production of single-cell-protein (SCP), alcohol oxidase and fine chemicals has been proposed. Fermentation technology developed for the growth of these yeasts on methanol at high cell densities has been commercialized. However, it is the production of heterologous recombinant proteins by Pichia pastoris that is emerging as the most significant application of the methylotrophic yeasts.  相似文献   

7.
甲醇酵母由于独特优点被认为是绿色生物制造的潜在宿主。特别是其天然甲醇利用性能有望建立甲醇生物转化路线,拓展生物炼制底物,具有重要经济价值和环保意义。文中综述了代谢工程改造甲醇酵母合成蛋白质和化学品的最新研究进展,并比较了其与模式生物酿酒酵母作为细胞工厂的优缺点。随后,分析了甲醇酵母代谢工程改造面临的挑战,并展望了潜在解决方案。随着基因操作工具开发和细胞代谢阐释,甲醇酵母将在未来绿色生物制造发挥越来越重要的作用。  相似文献   

8.
Abstract The use of methylotrophic yeasts for the production of single-cell-protein (SCP), alcohol oxidase and fine chemicals has been proposed. Fermentation technology developed for the growth of these yeasts on methanol at high cell densities has been commercialized. However, it is the production of heterologous recombinant proteins by Pichia pastoris that is emerging as the most significant application of the methylotrophic yeasts.  相似文献   

9.
Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, “Biotechnology of non-Saccharomyces yeasts—the ascomycetes” (Johnson Appl Microb Biotechnol 97: 503–517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary and secondary metabolites. This and the earlier mini-review (Johnson Appl Microb Biotechnol 97:503–517, 2013) were motivated during the preparation and publication of the landmark three-volume set of “The yeasts: a taxonomic study, 5th edition” (Kurtzman et al. 2011a, b).  相似文献   

10.
Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.  相似文献   

11.
Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.  相似文献   

12.
酱香型白酒发酵过程中核心酵母的鉴别及其功能   总被引:1,自引:1,他引:0  
宋哲玮  杜海  聂尧  徐岩 《微生物学通报》2020,47(11):3504-3514
【背景】酵母是酱香型白酒发酵过程中最重要的微生物,但酵母群落中核心酵母的种类和功能尚不清晰。【目的】通过探索酱香型白酒发酵微生物群落中核心酵母的种类和功能,为揭示酱香型白酒酿造机制以及提升白酒品质提供理论支撑。【方法】联合使用未培养(内转录间隔区扩增子和宏转录组高通量测序技术)和可培养(菌种筛选和模拟发酵实验)技术对酱香型白酒发酵过程中核心酵母的结构和功能进行定性和定量分析。【结果】内转录间隔区扩增子和宏转录组测序结果显示,酱香型白酒发酵过程中涉及10个属的酵母微生物,其中在发酵过程中平均相对丰度大于0.2%的酵母有13种,有2种核心酵母分别为库德威兹氏毕赤酵母(Pichia kudriavzevii)和粟酒裂殖酵母(Schizosaccharomyces pombe)。在发酵过程中,P. kudriavzevii占总量的89%以上,Schi. pombe表达了占总量21%以上的功能基因。模拟发酵实验结果显示P.kudriavzevii在酵母群落中发挥耐受乳酸积累的作用,而Schi. pombe在酵母群落中发挥耐受乙醇积累的作用,这两种作用保证了酱香型白酒发酵过程中酵母群落的结构和功能...  相似文献   

13.
近30年来解脂耶氏酵母、克鲁维酵母、毕赤酵母、假丝酵母、汉逊酵母等非传统酵母因其具有天然的生理代谢优势,如快速生长、多底物利用、胁迫耐受性等,在代谢工程领域得到了广泛关注,多种基因工程改造工具正逐渐被开发用于非传统酵母的特性拓展,使其成为合成重组蛋白、生物可再生化学物质的高效细胞工厂.文中总结了非传统酵母中基因编辑工具...  相似文献   

14.
15.
Systems biotechnology has been established as a highly potent tool for bioprocess development in recent years. The applicability to complex metabolic processes such as protein synthesis and secretion, however, is still in its infancy. While yeasts are frequently applied for heterologous protein production, more progress in this field has been achieved for bacterial and mammalian cell culture systems than for yeasts. A critical comparison between different protein production systems, as provided in this review, can aid in assessing the potentials and pitfalls of applying systems biotechnology concepts to heterologous protein producing yeasts. Apart from modelling, the methodological basis of systems biology strongly relies on postgenomic methods. However, this methodology is rapidly moving so that more global data with much higher sensitivity will be achieved in near future. The development of next generation sequencing technology enables an unexpected revival of genomic approaches, providing new potential for evolutionary engineering and inverse metabolic engineering.  相似文献   

16.
Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.  相似文献   

17.
In this paper a review is given about the most important lipase-producing yeasts as well as the yield of lipase production. In order to find out the optimal conditions for lipase production by yeasts, it is necessary to investigate the influence of the main factors affecting lipase synthesis such as carbon and nitrogen sources, activators and inhibitors, interface-affecting agents, temperature, pH and inoculum. Besides the yield of lipase as an efficiency factor of fermentation and the substrate specificity of lipase, playing an important role in applications, are described.  相似文献   

18.
Houard S  Heinderyckx M  Bollen A 《Biochimie》2002,84(11):1089-1093
Methylotrophic yeasts, named after their ability to grow on methanol as the sole carbon source, have raised large interest as recombinant protein factories. In this review, we explain the basic mechanisms underlying this interest and describe the minimal requirements to transform the two genera recognized as methylotrophic, Pichia and Candida, into a powerful protein production tool. We present a comparison between this group of yeasts and the conventional yeasts used as expression system in view of productivity, level of secretion and quality of post-translational modifications. Selected examples of recombinant protein produced by methylotrophic yeast are also included.  相似文献   

19.
工业酵母菌的遗传修饰研究进展及其应用前景   总被引:3,自引:1,他引:3  
简要概述工业酵母菌的遗传修饰研究进展,主要介绍适用于工业酵母菌遗传修饰的转化系统;敲除工业酵母基因工程菌细胞内不需要的基因的反选择技术;外源基因在工业酵母菌中克隆和表达的非自身克隆技术;工业酵母菌自身已有基因的克隆和表达的自身克隆技术等。此外,对遗传修饰的工业酵母菌的工业化应用前景作了简要展望 。  相似文献   

20.
为了更深入地从代谢角度研究萜类合成人工酵母的内在差异,以紫杉二烯人工酵母为例,利用代谢组学的方法对其发酵指数中期胞内代谢物的变化进行了测定。结果表明,与对照菌W303-1A相比,紫杉二烯的生产会对胞内糖酵解、三羧酸循环中间物及一些氨基酸的含量产生不同程度的影响,进而对其生长产生一定抑制作用。其中柠檬酸因紫杉二烯功能模块的引入下降明显,降幅达90%以上,因此可以作为后续功能酵母研究的标志性代谢物。紫杉二烯人工酵母细胞代谢组的研究可以为萜类化合物异源合成的优化提供更多的信息和帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号