首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal mosaicism has been reported in in vitro-cultured embryos at early cleavage stages, as well as in morulae and blastocysts. We have assessed the incidence and pattern of mosaicism during in vitro development of human embryos from early-cleavage stages to morula and blastocyst. Fifty spare embryos were fixed for fluorescence in situ hybridization (FISH) analysis for chromosomes X, Y, 13, 18, and 21 on days 2 or 3 (4- to 10-cell stage) (n = 16), on day 4 (morula stage) (n = 14), on day 5 (pre-expanded blastocyst) (n = 5), and the expanded blastocyst stages (n = 15). Blocked embryos (no cleavage observed within the last 24 hr) were not included. A total of 2367 cells were analyzed. Four early-cleavage stage embryos were found uniformly diploid; all of the others were mosaic for the chromosomes analyzed (mean diploid nuclei 48.3% +/- 28.7). All of the embryos at more advanced developmental stages, except one fully normal morula, had mosaic chromosome constitutions, with an increase in the percentage of diploid cells in morulae, pre-expanded, and expanded blastocysts, respectively (mean diploid nuclei 78.6% +/- 11.7, 66.0% +/- 20.8, 79.6% +/- 12.8), in comparison with earlier stages. Hypotheses about the origin of mosaicism and embryo regulation mechanisms will be discussed.  相似文献   

2.
Mouse embryos at the 2-, 4-, 8-cell, and morula stage were divided in half by using microsurgical procedures and were either grown in vitro up to the blastocyst stage or transferred at the late morula stage into the uteri of pseudopregnant recipients. A relatively high percentage of the half embryos from 2-cell (70%), 4-cell (75%), 8-cell (93%), or morula stage embryos (75%) developed into blastocysts in vitro. However, the overall development in vivo of half embryos was low, as 3%, 13%, 8%, and 1% of half embryos from the 2-cell, 4-cell, 8-cell, and morula stages, respectively, developed into live fetuses. Embryos which were divided in half at different stages developed at different rates in vitro. This determined the stage of embryonic development at the time of transfer, which might have interacted with the stage of pseudopregnancy of the recipients to influence embryo survival in vivo.  相似文献   

3.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

4.
This study evaluated the effect of freezing-thawing procedures on the viability of sheep embryos cryopreserved at various developmental stages. The survival rates of frozen-thawed embryos were compared with non-frozen counterparts. Embryos were recovered from the oviduct and uterus, at different days of the early luteal phase, and were classified at six different developmental stages: 2- to 4-cell (n = 72), 5- to 8-cell (n = 73), 9- to 12-cell (n = 70), early morulae (n = 42), morulae (n = 41), and blastocyst (n = 70). For each early cleavage stage and blastocysts, approximately half of the embryos, were frozen immediately by slow freezing with an ethylene glycol-based solution. The remaining embryos were cultured to the hatched blastocyst stage. All morulae and compact morulae were frozen after recovery with the same protocol. Cryoprotectants were removed using 1M sucrose solution, and then warmed the embryos were cultured to the hatched stage in a standardized in vitro culture. Embryo developmental stage had a significant effect on the ability to hatch following freezing (P<0.0001). The cryotolerance of the embryos fitted a regression (r2 = 0.908), increasing linearly from 2- to 4-cell embryos (17.1%) to morula stage (46.3%) and in a quadratic regression from the morula to the blastocyst stage (83.7%). Frozen early cleavage stage embryos had a significantly lower viability than their fresh counterparts (23.1 vs 83.1%; P<0.0001), with a similar rate of viability between fresh or frozen blastocysts (92.5 vs 83.7%). In conclusion, early sheep embryos are very sensitive to freezing per se and the survival rates following conventional freezing improve as embryo developmental stage progresses.  相似文献   

5.
Concentrations of ATP and ADP were measured in 156 sheep embryos by means of an ultramicrofluorescence assay. Stages of preimplantation development measured included unfertilized oocytes through blastocyst-stage embryos. ATP concentrations remained constant through the 8-cell stage; then ATP decreased significantly (p < 0.025) at the morula stage and remained low through the blastocyst stage. ADP concentrations did not change throughout the embryonic stages measured. Decreased levels of ATP with constant levels of ADP caused the ATP:ADP ratio to decrease significantly (p < 0.025) between the 8-cell and morula stages. We suggest that the increase in glucose uptake by sheep embryos observed at the morula stage of development may be due, in part, to a decrease in the ATP:ADP ratio.  相似文献   

6.
Embryos were collected non-surgically from the tip of one uterine horn of 23 lactating dairy cows on Day 7 of pregnancy. Embryos were classified on the basis of morphological criteria as normal (n = 12) or abnormal (n = 13). Abnormal embryos were further classified as cleavage stage (n = 9) or morula/blastocyst (n = 4). Cows producing an abnormal embryo did not differ in days post partum at oestrus, age or parity from cows producing a normal embryo. Cows with an abnormal morula/blastocyst also did not differ with respect to days post partum at oestrus from cows with abnormal cleavage-stage embryos but cows with an abnormal morula/blastocyst were significantly older and of greater parity than cows with an abnormal cleavage-stage embryo. Hepes-saline-PVP solution (30 ml) was initially infused into the uterine tip, mixed and then withdrawn with a syringe. Analysis of this fluid revealed that the concentrations of glucose, total protein, calcium, magnesium and potassium were significantly higher in the flushings from the uterus of cows with abnormal embryos than from cows with normal embryos and zinc and phosphorus tended to be higher in the uterine flushings of cows with abnormal embryos. Phosphorus, total protein, calcium and magnesium tended to be higher in the flushings from cows with abnormal morulae/blastocysts than from cows with abnormal cleavage-stage embryos. Plasma progesterone did not differ between cows with normal or abnormal embryos or in cows with abnormal morulae/blastocysts or abnormal cleavage-stage embryos. Most embryonic mortality therefore occurred before Day 5 (during cleavage) in these cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Effects of the embryo retrieval stages and addition of glutathione (GSH) on post-thaw development of mouse morula were evaluated in 2 consecutive experiments. In the first experiment, 1-, 2-, 3- to 4- and 5- to 8-cell stage embryos were collected and cultured to the morula stage in Whitten's medium containing 0.1 mM ethylenediaminetetraacetic acid (EDTA). The development rate of 1-cell embryos to the morula stage was lower than that of the other stages (P<0.01). The post-thaw development rate of the morulae obtained from in vitro culture of 1-, 2-, 3- to 4-, and 5- to 8-cell embryos and from in vivo embryos (control) to the blastocyst stage was 55.5, 84.9, 87.4, 90.1 and 90.8%, respectively. The post-thaw development rate of morula obtained from in vitro produced 1-cell embryos was significantly lower than from the other stages or from the in vivo counterparts (P<0.0001). In Experiment 2, the impact of GSH supplementation of the culture medium in the presence or absence of EDTA was evaluated for embryo development to the morula stage and post-thaw survival, using in the 2 x 2 factorial design. Although EDTA supplementation increased development rates to the morulae (P<0.01) stage, GSH did not have an influence on morula development. However, the presence of either GSH or EDTA in the culture medium supported development to the blastocyst stage (P<0.01) of in vitro produced morulae. These data demonstrate that 1-cell embryos from a blocking-strain mouse cultured in vitro to the morula stage have a lower development rate following freezing and thawing than embryos collected at the 2-cell or later stages. Addition of EDTA or GSH, individually or in combination, to the culture medium may improve the development rate of morula to blastocyst stage following cryopreservation.  相似文献   

8.
Nuclear transfer was used to study nuclear reprogramming of fetal diploid bovine germ cells collected at two stages of the fetal development. In the first case, germ cells of both sexes were collected during their period of intragonadal mitotic multiplication at 48 days post co?tum (d.p.c.). In the second case, only male germ cells were collected after this period, between 105 and 185 d.p.c. Isolated germ cells were fused with enucleated oocytes. Reconstituted embryos were cultured in vitro and those reaching the compacted morula or blastocyst stage were transferred into synchronous recipient heifers. Of 511 reconstituted embryos with 48 d.p.c. germ cells (309 males and 202 females), 48% (247/511 ) cleaved; 2.7% (14/511 ) reached the compacted morula stage and 8 of them the blastocyst stage (1.6%). No difference was observed between sexes. All 14 compacted morulae/blastocysts were transferred into 6 recipients and one pregnancy was initiated. This recipient was slaughtered at Day 35 and an abnormal conceptus (extended trophectoderm and degenerated embryo) was collected. Its male sex, genetically determined, corresponded to that of donor fetus. Of 380 reconstituted embryos with male 105 to 185 d.p.c. germ cells, 72.1% (274/380 ) cleaved, 2.1% (8 380 ) reached the compact morula stage and 7 of these the blastocyst stage (1.8%). Three blastocysts and one morula were transferred into 4 recipients. Two became pregnant at Day 21 but only one at Day 35 which aborted around Day 40. Our results show that the nucleus of diploid bovine germ cells of both sexes can be reprogrammed. However, in the absence of further development of these reconstituted embryos, nuclear totipotency of bovine diploid germ cells remains to be evidenced.  相似文献   

9.
10.
Glucose metabolism by preimplantation pig embryos   总被引:2,自引:0,他引:2  
Pig embryos were collected, 2-7 days after oestrus, in modified BMOC-2 containing glucose as the only energy source. Embryos were incubated individually in medium containing [5-(3)H]-, [1-(14)C]- or [6-(14)C]glucose. Total glucose metabolism, as measured by [5-(3)H]glucose use, increased steadily from the 1-cell to the 8-cell stage. Total glucose use increased (P less than 0.05) at the compacted morula stage and was highest (P less than 0.05) at the blastocyst stage. Production of 14CO2 from embryos metabolizing [1-(14)C]glucose increased steadily from the unfertilized ovum to the 8-cell stage. Metabolism of [1-(14)C]glucose increased at the compacted morula stage (P less than 0.05) and continued to increase (P less than 0.05) to the blastocyst stage. Metabolism of [6-(14)C]glucose increased steadily from the unfertilized ovum to the compacted morula stage. Metabolism of [6-(14)C]glucose was highest (P less than 0.05) for the blastocyst stage. Percentage pentose phosphate pathway activity of total glucose metabolism before the 4-cell stage was higher (greater than 5%) than that of 8-cell to blastocyst stage embryos (approximately 1%). When embryo metabolism was determined on a per cell basis for each isotope, the compacted morulae stage (16 cells) had a higher total glucose metabolism than all other embryo stages (P less than 0.05), while early blastocyst (32 cells) and blastocyst (64 cells) stage embryos metabolized more [5-(3)H]glucose than all stages except compacted morulae (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
To clarify the causes of the poor success rate of somatic cell nuclear transfer (SCNT), we addressed the impact of abnormalities observed at early cleavage stages of development on further full-term development using 'less-damage' imaging technology. To visualize the cellular and nuclear division processes, SCNT embryos were injected with a mixture of mRNAs encoding enhanced green fluorescent protein coupled with α-tubulin (EGFP-α-tubulin) and monomeric red fluorescent protein 1 coupled with histone H2B (H2B-mRFP1) and monitored until the morula/blastocyst stage three-dimensionally. First, the rate of development of SCNT embryos and its effect on the full-term developmental ability were analyzed. The speed of development was retarded and varied in SCNT embryos. Despite the rate of development, SCNT morulae having more than eight cells at 70h after activation could develop to term. Next, chromosomal segregation was investigated in SCNT embryos during early embryogenesis. To our surprise, more than 90% of SCNT embryos showed abnormal chromosomal segregation (ACS) before they developed to morula stage. Importantly, ACS per se did not affect the rate of development, morphology or cellular differentiation in preimplantation development. However, ACS occurring before the 8-cell stage severely inhibited postimplantation development. Thus, the morphology and/or rate of development are not significant predictive markers for the full-term development of SCNT embryos. Moreover, the low efficiency of animal cloning may be caused primarily by genetic abnormalities such as ACS, in addition to the epigenetic errors described previously.  相似文献   

12.
Albino mouse embryonic cells (Gpi-la/a) at 3.5–8.5 and 11.5 days were aggregated with zona cut 8–16 cell stage embryos from F1 females (Gpi-1 b/b), respectively. The aggregated embryos were transferred to pseudopregnant female mice. The recipients were allowed to go to term or were dissected at mid-gestation to assess the donor contribution in the conceptuses using glucose phosphate isomerase (GPI) analysis. The donor cells, which were previously labeled with fluorescent latex microparticles, were aggregated with embryos, and the allocation of the donor cells at the compacted morula and blastocyst stages were observed under a fluorescence microscope. When 3.5 and 45 day old inner-cell-mass (ICM) cells were used, fertile chimeric mice were obtained (50 and 19%, respectively), and when 5.5 days old primitive ectoderm cells were aggregated, they did not form chimeras but contributed to the fetuses, placenta and membrane after 13.5 days of pregnancy. However, cells from further stages never contributed to the conceptuses even though they were analyzed after 10.5 days of pregnancy. The labeled donor cells at these stages were not positively incorporated in the interior part of the compacted morula and the ICM of the blastocyst stage unlike the ICM at 3.5 days post-coitum after overnight culture.  相似文献   

13.
Bovine follicular oocytes from individual heifers (n=49) were separately matured, fertilized with frozen-thawed spermatozoa and cultured with cumulus cells. Although there were great variations in the number (mean+/-SD=19.1+/-11.9) of oocytes collected from individual heifers and the percentages of the oocytes cleaved 48 hours after insemination (mean+/-SD=69.5+/-18.4) and developed to the morula stage 7 days after insemination (mean+/-SD=10.9+/-10.9), there were significant correlations between the numbers of oocytes collected and cleaved (the correlation coefficient: r= 0.9336) or developed to morula stage (r=0.6633), indicating that oocytes from different heifers have the same developmental ability after in vitro fertilization. Ten morulae and 12 blastocysts which were obtained 7 and 8 days after insemination were transferred, one by one, to each uterine horn of 11 recipients. At Day 60 of pregnancy, 8 (80%) fetuses were identified in 4 (80%) of 5 recipients into which 10 embryos were transferred at Day -1 of synchrony. However, only 3 (25%) fetuses were identified in 2 (40%) of 6 recipients into which 12 embryos were transferred at Day 0 or +1 of synchrony.  相似文献   

14.
15.
Smith  S.  Schmidt  M.  Purwantara  B.  Greve  T. 《Acta veterinaria Scandinavica》1992,33(4):349-355
One- to 16-cell porcine embryos were cultured in either Whittens medium supplemented with bovine serum albumin and fetal calf serum (WM) or in the same medium with porcine oviduct epithelial cell co-culture (WM-Poec). All stages of embryos cultured in WM-POEC had higher cell counts after 144–168 h of development than did embryos in WM. There was however, no significant difference in blastocyst formation rate of embryos cultured in WM-POEC over those cultured in WM. A high proportion of the embryos entering culture at the 1-2-cell were able to pass the 4-cell block stage in both WM and WM-POEC, 81% and 77%, respectively. In both media, most of the 1-2-cell embryos arrested their development at the compacted morula stage and failed to blastulate while embryos initiating culture at the 4-and 8-16-cell embryos formed blastocysts in culture at a rate of 80–90%.  相似文献   

16.
Leukemia inhibitory factor (LIF) is an essential factor for implantation and establishment of pregnancy. However, its role in the development of preimplantation embryos remains controversial. In this study, changes in preimplantation embryos were determined after microinjection of LIF antisense oligonucleotide at the two-pronucleus stage. Although no significant differences were found in the percentages between the untreated group and the 0.25-fmol-treated group, the 0.5- or 1.0-fmol-treated groups had significantly lower percentages of embryos developed to the morula or blastocyst stage and the 2.0-fmol-treated group had significantly lower percentages of embryos developed to the four-cell, morula, or blastocyst stage. No embryos developed to the four-cell stage in the 4.0-fmol-treated group. Moreover, there was a decreasing trend in the levels of LIF immunoactivity with the increasing amount of LIF antisense oligonucleotide injected. The diameter of blastocysts in the 2.0-fmol-treated group was significantly smaller than that in the untreated group. The blastocysts in this group had significantly lower numbers of blastomeres and cells in the inner cell mass (ICM) or trophectoderm (TE) and ICM:TE ratio. The 1.0- or 2.0-fmol-treated groups had significantly lower implantation rates than their corresponding control groups. In the 2.0-fmol groups with supplementing exogenous LIF, significantly lower percentages were also observed in the four-cell, morula, and blastocyst stages. However, blastocysts treated with 50 ng/ml LIF had a significantly higher percentage than those in the LIF gene-impaired group without LIF supplement. These results indicate that LIF is a critical factor for the normal development of embryos at the preimplantation stages.  相似文献   

17.
A quantitative RT-PCR approach has been used to examine the expression of a number of X-linked genes during preimplan-tation development of normal mouse embryos and in androgenetic and gynogenetic mouse embryos. The data reveal moderately reduced expression of the Prps1, Hprt, and Pdha1 mRNAs in androge-netic eight-cell and morula stage embryos, but not in androgenetic blastocysts. Pgk1 mRNA abundance was severely reduced in androgenones at the eight-cell and morula stages and remained reduced, but to a lesser degree, in androgenetic blastocysts. These data indicate that paternally inherited X chromosomes are at least partially repressed in androgenones, as they are in normal XX embryos, and that the degree of this repression is chromosome position-dependent or gene-dependent. Gynogenetic embryos expressed elevated amounts of some mRNAs at the morula and blas-tocyst stages, indicative of a delay in dosage compensation that may be chromosome position-dependent. The Xist RNA was expressed at a greater abundance in androgenones than in gynogenones at the eight-cell and morula stages, consistent with previous studies. Xist expression was observed in both and rogenones and gynogenones at the blas-tocyst stage. We conclude that the developmental arrest in early androgenones may be, in part, due to reduced expression of essential X-linked genes, particularly those near the X inactivation center, where as the developmental defects of gyno-genones and parthenogenones, by contrast, may be partially due to overexpression of X-linked genes in extraembryonic tissues, possibly those far-thest away from the X inactivation center. © 1995 Wiley-Liss, Inc.  相似文献   

18.
在马(Equus caballus)的繁殖和非繁殖季节,本研究探讨马扩展型(Ex)和紧凑型(Cp)卵丘-卵母细胞复合体(COCs)卵母细胞的孤雌激活效率。在繁殖季节,探讨马驹和成年马成纤维细胞核移植(SCNT)的成功率。孤雌激活实验结果显示,在繁殖季节,发育到2-细胞、4-细胞和桑椹胚的比例,扩展型(Ex)卵丘-卵母细胞复合体分别是52.8%(19/36)、38.9%(14/36)和5.6%(2/36),紧凑型(Cp)卵丘-卵母细胞复合体分别是47.9%(23/48)、33.3%(16/48)和6.2%(3/48)。在非繁殖季节,发育到2-细胞、4-细胞的比例,扩展型(Ex)分别是37.2%(16/43)和16.3%(7/43),紧凑型(Cp)的比例分别是35.1%(27/77)和11.7%(9/77),都没有获得桑椹胚。同一季节,扩展型(Ex)与紧凑型(Cp)胚胎发育的比率差异不显著(P 0.05),不同季节,两者差异显著(P 0.05)。体细胞核移植实验结果显示,以马驹成纤维细胞作为核供体细胞,胚胎发育到2-细胞、4~8细胞和桑椹胚的比例分别是41.5%(22/53)、33.9%(18/53)和15.1%(8/53),以成年马成纤维细胞作为核供体细胞,比例分别是38.9%(7/18)、22.2%(4/18),没有获得桑椹胚。综上所述,季节和卵丘-卵母细胞复合体(COCs)类型影响马卵母细胞孤雌激活的效率,不同核供体细胞影响克隆胚胎构建的成功率。  相似文献   

19.
Lin TA  Chen CH  Sung LY  Carter MG  Chen YE  Du F  Ju JC  Xu J 《Theriogenology》2011,75(4):760-768
The objective was to determine cryotolerance of in vitro cultured rabbit embryos to the open-pulled straw (OPS) method. Overall, 844 rabbit embryos at pronuclear, 2- to 4-cell, 8-cell, and morula/blastocyst stages were vitrified, and ≥ 1 mo later, were sequentially warmed, rehydrated, and subjected to continuous culture (n = 691) or embryo transfer (ET, n = 153). Embryos vitrified at the 8-cell stage or beyond had greater survival, expanded blastocyst and hatched blastocyst rates in vitro, and better term development than those vitrified at earlier stages. The 8-cell group had 70.1% expanded blastocysts, 63.7% hatched blastocysts, and 25.7% term development, as compared to 1.5-17.7%, 1.5-4.3% and 2.8-3.7% in the pronuclear, 2-cell and 4-cell embryos, respectively (P < 0.05). The expanded and hatched blastocyst rates in vitrified morula/blastocyst post-warming were higher than that in the 8-cell group; however, their term development after ET was similar (8-cell vs morula/blastocyst: 25.7 vs 19.4%, P > 0.05). Development after ET was comparable between vitrified-warmed embryos and fresh controls at 8-cell and morula/blastocyst stages (19.4-25.7 vs 13.7-26.6%, P > 0.05). For embryos at pronuclear or 2- to 4-cell stages, however, term rates were lower in the vitrified-warmed (2.8-3.7%) than in fresh controls (28.6-35.6%, P < 0.05). Therefore, cultured rabbit embryos at various developmental stages had differential crytolerance. Under the present experimental conditions, the 8-cell stage appeared to be the critical point for acquiring cryotolerance. We inferred that for this OPS cryopreservation protocol, rabbit embryos should be vitrified no earlier than the 8-cell stage, and stage-specific protocols may be needed to maximize embryo survival after vitrification and re-warming.  相似文献   

20.
Stage-dependent viability of vitrified rabbit embryos   总被引:1,自引:0,他引:1  
Smorag Z  Gajda B  Wieczorek B  Jura J 《Theriogenology》1989,31(6):1227-1231
The aim of the work was to determine the susceptibility of rabbit embryos to vitrification at different developmental stages. The experiment was carried out on 676 embryos at 1-, 2- and 8-to 16-cell stages as well as the morula and blastocyst stages. As a vitrification medium, a mixture of 30% 1,2-propanediol + 30% glycerol (Solution I), or 35% 1,2-propanediol + 35% glycerol (Solution II), was used. The embryos were frozen in glass ampules placed in nitrogen vapour for 5 min before being plunged into liquid nitrogen. Dilution after rapid thawing was done in one step in a 1-M sucrose solution. After vitrification in Solution I, none of the 1- or 2-cell embryos survived, whereas the survival rate of 8-to 16-cell embryos, morula and blastocysts, was 23.0, 82.7 and 78.5%, respectively. After vitrification in Solution II, the survival rate of 1-, 2- and 8-to 16-cell embryos was 20.0, 43.8 and 92.9%, respectively. The proportion of live offspring on the Day 28 after transfer of 68 vitrified morula was 26.5% compared with 24.0% in the control group. Thus, the proposed vitrification procedures can be useful in the cryopreservation of rabbit embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号