首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in DNA repair lead to genomic instability and higher risk of cancer. DNA base excision repair (BER) corrects damaged bases, apurinic sites, and single-strand DNA breaks. Here, a regulatory mechanism for DNA polymerase beta (Pol beta) is described. Pol beta was found to form a complex with the protein arginine methyltransferase 6 (PRMT6) and was specifically methylated in vitro and in vivo. Methylation of Pol beta by PRMT6 strongly stimulated DNA polymerase activity by enhancing DNA binding and processivity, while single nucleotide insertion and dRP-lyase activity were not affected. Two residues, R83 and R152, were identified in Pol beta as the sites of methylation by PRMT6. Genetic complementation of Pol beta knockout cells with R83/152K mutant revealed the importance of these residues for the cellular resistance to DNA alkylating agent. Based on our findings, we propose that PRMT6 plays a role as a regulator of BER.  相似文献   

2.
N6-METHYLADENINE (6-MeAde) and 5-methylcytosine occur as minor bases in bacterial and phage DNA1–7 and seem to result from the selective methylation of adenine and cytosine residues by specific DNA methylases8. Methylation is the final stage in DNA synthesis and is essential for the phenomenon of host modification of phages9–11; it is one of the mechanisms controlling DNA replication in the cell12, 13. A study of the distribution of minor bases in DNA is therefore important not only for the elucidation of the specificity and mechanism of action of DNA methylases but also for an understanding of the purpose of this methylation. We believe that in Escherichia coli, DNA methylase exerts its action on adenine residues in chain terminating triplets: 6-MeAde may serve as a signal for gene termination in this system.  相似文献   

3.
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.  相似文献   

4.
The amino acid sequence of the IICNBr fragment of the human erythrocyte carbonic anhydrase B has been determined. This fragment contains the first 148 of the 260 residues of the N-acetylated single polypeptide chain of the protein. After tryptic hydrolysis of this fragment, eleven peptides have been isolated by gel filtration and chromatography on Dowex 50 W-X2 or DEAE-Sephadex. Eight of them were identified with already sequenced peptides previously isolated from tryptic hydrolysate of the whole protein. The other three ones were obtained in pure form and sequenced. The combined amino acid content of these eleven peptides only account for 124 of the 148 amino acid residues in the IICNBr fragment. The tryptic attack of the maleylated IICNBr fragment gave three peptides as was expected from the number of arginine residues (2) in this fragment: two arginyl peptides (II1, II3) and one homoseryl peptide (II2). They were purified by gel filtration. The unidentified 24 residue tryptic peptide has been isolated from the demaleylated II2 tryptic hydrolysate and sequenced. The order of the twelve tryptic peptides of IICNBr fragment has been obtained by study of chymotrypsic peptides isolated from II1 and IICNBr fragment.  相似文献   

5.
Alignments of the sequences of the all members of the archaeal histone and Alba1 families of chromatin proteins identified isoleucine residues, I19 in HMtB and I39 in MtAlba, in Methanothermobacter thermautotrophicus, at locations predicted to be directly involved in DNA binding. In all other HMfB family members, residue 19 is an arginine (R19), and either arginine or lysine is present in almost all other Alba1 family members at the structural site equivalent to I39 in MtAlba. Electrophoretic mobility shift assays revealed that recombinant HMtB and MtAlba do not bind DNA, but variants constructed with R19 and R39, respectively, bound DNA; and whereas MtAlba(I19) did not bind RNA, MtAlba(R19) bound both single stranded RNA and tRNA. Amplification and sequencing of MT0254 (encodes HMtB) and MT1483 (encodes MtAlba) from several Methanothermobacter thermautotrophicus lineages has revealed that HMtB and MtAlba had arginine residues at positions 19 and 39, respectively, in the original isolate and that spontaneous mutations must have occurred, and been fixed, in some laboratory lineages that now have HMtB(I19) and MtAlba(I39). The retention of these variants suggests some continuing functions and fusion of the HMtB(I19) sequence to HMtA2 resulted in a protein that folds to form a histone fold heterodimer that binds and compacts DNA. The loss of DNA binding by HMtB(I19) does not therefore prevent HMtB from participating in DNA interactions as one partner of an archaeal histone heterodimer.  相似文献   

6.
Cation-pi interactions between an aromatic ring and a positive charge located above it have proven to be important in protein structures and biomolecule associations. Here, the role of these interactions at the interface of protein-DNA complexes is investigated, by means of ab initio quantum mechanics energy calculations and X-ray structure analyses. Ab initio energy calculations indicate that Na ions and DNA bases can form stable cation-pi complexes, whose binding strength strongly depends on the type of base, on the position of the Na ion, and whether the base is isolated or included in a double-stranded B-DNA. A survey of protein-DNA complex structures using appropriate geometrical criteria revealed cation-pi interactions in 71% of the complexes. More than half of the cation-pi pairs involve arginine residues, about one-third asparagine or glutamine residues that only carry a partial charge, and one-seventh lysine residues. The most frequently observed pair, which is also the most stable as monitored by ab initio energy calculations, is arginine- guanine. Arginine-adenine interactions are also favorable in general, although to a lesser extent, whereas those with thymine and cytosine are not. Our calculations show that the major contribution to cation-pi interactions with DNA bases is of electrostatic nature. These interactions often occur concomitantly with hydrogen bonds with adjacent bases; their strength is estimated to be from three to four times lower than that of hydrogen bonds. Finally, the role of cation-pi interactions in the stability and specificity of protein-DNA complexes is discussed.  相似文献   

7.
Arginine chromatography was used to fully separate supercoiled and open circular plasmid DNA (pDNA) isoforms. The results show that the arginine matrix promotes multiple interactions with pDNA, including not only electrostatic and hydrophobic but also biorecognition of nucleotide bases by the arginine ligand. The strong interactions occurring with DNA backbone provide stability, conducting to high effectiveness of arginine support to bind pDNA at low ionic strength. The specific interaction of arginine with sc pDNA could be due to the ability of arginine matrix to be involved in complex interactions that are partly dependent on the conformation of the DNA molecule.  相似文献   

8.
Yunhui Peng  Emil Alexov 《Proteins》2017,85(2):282-295
Protein–nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein–nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein–nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein–protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH‐optimum of protein–DNA/RNA binding free energy and the pH‐optimum of protein folding free energy. Overall, the pH‐dependence of protein–nucleic acid binding is not predicted to be as significant as that of protein–protein association. Proteins 2017; 85:282–295. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Amino acid residues arginine (R) and lysine (K) have similar physicochemical characteristics and are often mutually substituted during evolution without affecting protein function. Statistical examinations on human proteins show that more R than K residues are used in the proximity of R residues, whereas more K than R are used near K residues. This biased use occurs on both a global and a local scale (shorter than ∼100 residues). Even within a given exon, G + C-rich and A + T-rich short DNA segments preferentially encode R and K, respectively. The biased use of R and K on a local scale is also seen in Saccharomyces cerevisiae and Caenorhabdidtis elegans, which lack global-scale mosaic structures with varying GC%, or isochores. Besides R and K, several amino acids are also used with a positive or negative correlation with the local GC% of third codon bases. The local-, or ``within-gene'-, scale heterogeneity of the DNA sequence may influence the sequence of the encoded protein segment. Received: 2 March 1998 / Accepted: 23 April 1998  相似文献   

10.
Nagaoka M  Shiraishi Y  Uno Y  Nomura W  Sugiura Y 《Biochemistry》2002,41(28):8819-8825
In the typical base recognition mode of the C(2)H(2)-type zinc finger, the amino acid residues at alpha-helical positions -1, 3, and 6 make a contact with the base in one strand (the primary strand), and the residue at position 2 interacts with the base in a complementary strand (the secondary strand). The N-terminal zinc finger of the three-zinc-finger domain of Sp1 has inherently a unique five-base-pair binding mode in which the guanine bases are recognized in both strands. To clarify the effect of the amino acid at position 2 on DNA binding affinity and base specificity, we have created a library of the mutants by the interconversion between serine and aspartic acid in the N-terminal zinc finger of Sp1 and recombinant variants of finger order. Gel mobility shift and methylation interference assays showed that the combination of arginine and serine at positions -1 and 2, respectively, provides a newly strong guanine contact in the secondary strand and a higher binding affinity than that of wild-type Sp1. Of special interest are the facts that the mutant with lysine and aspartic acid at positions -1 and 2 in the alpha helix predominantly recognizes the bases in the secondary strand and that its DNA binding affinity is higher than that of the wild-type. The aspartic acid or serine at position 2 independently contributes to the DNA binding affinity and base specificity. The present results provide useful information for the design of a novel zinc finger protein with priority for the bases in the secondary strand.  相似文献   

11.
Although DNA polymerase eta (Pol eta) and other Y family polymerases differ in sequence and function from classical DNA polymerases, they all share a similar right-handed architecture with the palm, fingers, and thumb domains. Here, we examine the role in Saccharomyces cerevisiae Pol eta of three conserved residues, tyrosine 64, arginine 67, and lysine 279, which come into close contact with the triphosphate moiety of the incoming nucleotide, in nucleotide incorporation. We find that mutational alteration of these residues reduces the efficiency of correct nucleotide incorporation very considerably. The high degree of conservation of these residues among the various Y family DNA polymerases suggests that these residues are also crucial for nucleotide incorporation in the other members of the family. Furthermore, we note that tyrosine 64 and arginine 67 are functionally equivalent to the deoxynucleotide triphosphate binding residues arginine 518 and histidine 506 in T7 DNA polymerase, respectively.  相似文献   

12.
Oxidized bases are removed from DNA of Escherichia coli by enzymes formamidopyrimidine DNA glycosylase (Eco-Fpg) and endonuclease VIII (Eco-Nei) of the same structural family Fpg/Nei. New homologs of these enzymes not characterized earlier have been found in genomes of Actinobacteria. We have cloned and expressed two paralogs (Mtu-Nei2 and Mtu-Fpg2) from 36KAZ and KHA94 isolates of Mycobacterium tuberculosis and studied their ability to participate in DNA repair. Under heterologous expression in E. coli, Mtu-Nei2 decreased the rate of spontaneous mutagenesis in the rpoB gene, whereas Mtu-Fpg2 moderately increased it, possibly due to absence of residues crucially important for catalysis in this protein. Mtu-Nei2 was highly active toward double-stranded DNA substrates containing dihydrouracil residues and apurine-apyrimidine sites and was less efficient in cleavage of substrates containing 8-oxoguanine and uracil residues. These lesions, as well as 8-oxoadenine residues, were also recognized and removed by the enzyme from single-stranded DNA. Fpg and Nei homologs from M. tuberculosis can play an important role in protection of bacteria against genotoxic stress caused by oxidative burst in macrophages.  相似文献   

13.
14.
Herpes simplex virus DNA polymerase is a heterodimer composed of UL30, a catalytic subunit, and UL42, a processivity subunit. Mutations that decrease DNA binding by UL42 decrease long chain DNA synthesis by the polymerase. The crystal structure of UL42 bound to the C terminus of UL30 revealed an extensive positively charged surface ("back face"). We tested two hypotheses, 1) the C terminus of UL30 affects DNA binding and 2) the positively charged back face mediates DNA binding. Addressing the first hypothesis, we found that the presence of a peptide corresponding to the UL30 C terminus did not result in altered binding of UL42 to DNA. Addressing the second hypothesis, previous work showed that substitution of four conserved arginine residues on the basic face with alanines resulted in decreased DNA affinity. We tested the affinities for DNA and the stimulation of long chain DNA synthesis of mutants in which the four conserved arginine residues were substituted individually or together with lysines and also a mutant in which a conserved glutamine residue was substituted with an arginine to increase positive charge on the back face. We also engineered cysteines onto this surface to permit disulfide cross-linking studies. Last, we assayed the effects of ionic strength on DNA binding by UL42 to estimate the number of ions released upon binding. Our results taken together strongly suggest that the basic back face of UL42 contacts DNA and that positive charge on this surface is important for this interaction.  相似文献   

15.
To achieve accurate gene regulation, some homeodomain proteins bind cooperatively to DNA to increase those site specificities. We report a ternary complex structure containing two homeodomain proteins, aristaless (Al) and clawless (Cll), bound to DNA. Our results show that the extended conserved sequences of the Cll homeodomain are indispensable to cooperative DNA binding. In the Al–Cll–DNA complex structure, the residues in the extended regions are used not only for the intermolecular contacts between the two homeodomain proteins but also for the sequence‐recognition mechanism of DNA by direct interactions. The residues in the extended N‐terminal arm lie within the minor groove of DNA to form direct interactions with bases, whereas the extended conserved region of the C‐terminus of the homeodomain interacts with Al to stabilize and localize the third α helix of the Cll homeodomain. This structure suggests a novel mode for the cooperativity of homeodomain proteins.  相似文献   

16.
Summary Using polyacrylamide films containing poly-lysine, polyargine and DNA as test models, a variety of reportedly specific staining procedures have been examined. Contrary to published observations, mixtures of fast green and eosin Y show no specific staining of either lysine or arginine. Both amino-acids bind eosin from the mixture more strongly than fast green. Arginine apparently has a greater affinity for this eosin than has lysine which contradicts previous reports that lysine will be stained by eosin while arginine will stain with fast green, if proteins containing both amino-acids are stained with the dye mixture. In films containing lysine and/or arginine picric acid is shown to bind specifically to the arginine. The picric acid-arginine complex resists disruption in 0.004 M borate buffer which is a solvent used for subsequent staining of lysine residues with bromophenol blue. Picric acid may also be used as a hydrolysant and substitute for hydrochloric acid in a Feulgen-like procedure which stains DNA to the same level as the classical hydrochloric acid based procedure while also staining arginine present.  相似文献   

17.
Complex formation between the side chain of arginine and nucleic acid bases has been investigated by proton magnetic resonance in dimethylsulfoxide. Simultaneous formation of two hydrogen bonds leads to a selectivity of arginine interaction towards cytosine and guanine. A comparison is made of the interaction of arginine side chain with nucleic acid bases, phosphate and carboxylate anions. It is shown that interaction between carboxylate and arginine is stronger than between phosphate and arginine. These results are discussed with respect to the selective recognition of nucleic acid bases by arginine side chains and by the arginyl-glutamyl ion pair which could form in proteins interacting with nucleic acids.  相似文献   

18.
Origin of ultraviolet damage in DNA   总被引:12,自引:0,他引:12  
A novel ultraviolet (u.v.) footprinting technique has been used to analyze the formation of u.v. photoproducts at 250 bases of a 5 S rRNA gene under conditions where the gene is either double or single-stranded. Because many more types of u.v. damage can be detected by the u.v. footprinting technique than has been previously possible, we have been able to examine in detail why certain bases in DNA are damaged by u.v. light while others are not. Our measurements demonstrate that the ability of u.v. light to damage a given base in DNA is determined by two factors, the sequence of the DNA in the immediate vicinity of the photoproduct, and the flexibility of the DNA at the site of the photoproduct. For pyrimidines, the predominant photoreaction in double-stranded DNA involves covalent dimerization between adjacent pyrimidine residues. Dimerization is much easier in melted DNA because the geometrical changes required for adjacent pyrimidine residues to dimerize are easier in single-stranded DNA. The absorption of a u.v. photon cannot simultaneously induce the geometrical changes required for adjacent pyrimidines or other bases to dimerize with one another. Rather, upon the absorption of a u.v. photon, only those thermally excited bases that are in a geometry capable of easily forming a photodimer during excitation, can photoreact. In contrast to adjacent pyrimidines, non-adjacent pyrimidines (pyrimidines flanked on either side by a purine) do not readily form u.v. photoproducts in double-stranded DNA. Because photoreactions at non-adjacent pyrimidine residues are greatly enhanced in single-stranded DNA, their failure to form in double-helical DNA is attributed to torsional constraints imposed by the double helix which make it difficult for non-adjacent pyrimidines to adopt a geometry necessary for photoreaction. Although purines are believed to be resistant to u.v. damage, our measurements demonstrate that at moderate u.v. dosages purines which are flanked on their 5' side by two or more contiguous pyrimidines readily form u.v. photoproducts in double-stranded DNA. Flanking pyrimidines appear to activate purine photoreactions by transferring triplet excitation energy to the purine. Melting of the DNA helix greatly inhibits the ability of flanking pyrimidines to activate purine photoreactions, presumably by disrupting intimate orbital overlap required for triplet transfer.  相似文献   

19.
Modification of the herpes simplex virus type 1 major DNA-binding protein (ICP8) with reagents and conditions specific for arginine, lysine, and tyrosine residues indicates that surface lysine and tyrosine residues are required for the interaction of this protein with single-stranded DNA. Modification of either of these two amino acids resulted in a loss and/or modification of binding activity as judged by nitrocellulose filter assays and gel shift. Modification specific for arginine residues did not affect binding within the limits of the assays used. Finally, quenching of the intrinsic tryptophan fluorescence of ICP8 in the presence of single-stranded DNA either suggests involvement of this amino acid in the binding reaction or reflects a conformational change in the protein upon binding.  相似文献   

20.
The activity of human TREX2-catalyzed 3' --> 5'-deoxyribonuclease has been analyzed in steady-state and single turnover kinetic assays and in equilibrium DNA binding studies. These kinetic data provide evidence for cooperative DNA binding within TREX2 and for coordinated catalysis between the TREX2 active sites supporting a model for communication between the protomers of a TREX2 dimer. Mobile loops positioned adjacent to the active sites provide the major DNA binding contribution and facilitate subsequent binding into the active sites. Mutations of three arginine residues on these loops cause decreased TREX2 activities by up to 60-fold. Steady-state kinetic assays of these arginine to alanine TREX2 variants result in increased K(m) values for DNA substrate with no effect on k(cat) values indicating contributions exclusively to DNA binding by all three of the loop arginines. TREX2 heterodimers were prepared to determine whether exonuclease activity in one protomer is communicated to the opposing protomer. Evidence for communication across the dimer interface is provided by the 7-fold lower catalytic activity measured in the TREX2(WT/H188A) heterodimer compared with the TREX2(WT) homodimer, contrasting the 2-fold lower activity measured in the TREX2(WT/R163A,R165A,R167A) heterodimer. The measured activity in TREX2(WT/H188A) heterodimer indicates that defective catalysis in one protomer reduces activity in the opposing protomer. A DNA binding analysis of TREX2 and the heterodimers indicates a cooperative binding effect within the TREX2 protomer. Finally, single turnover kinetic assays identify DNA binding as the rate-limiting step in TREX2 catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号