首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
From leaves of Psychotria leiocarpa, an indole alkaloid was isolated to which the structure N,beta-D-glucopyranosyl vincosamide (1) was assigned. This represents the first report of an N-glycosylated monoterpenoid indole alkaloid. In field-grown plants highest amounts of 1 were found in the leaves (2.5% of dry wt) and fruit pulp (1.5% dry wt). Lower amounts were found in the stems (0.2% dry wt) and the seeds (0.1% of dry wt), whereas the alkaloid was not detected in the roots. The accumulation of 1 in aseptic seedlings was also restricted to the shoots and increased with plant age and light exposure, independent of the supply of sucrose in the culture medium.  相似文献   

2.
Presence of 4-hydroxybenzoic acid in the mesocarp walls of 22 genera of Arecaceae (Palmae) was investigated using a TLC/UV spectra analysis method and confirmed by HPLC and ESI-MS. The genera collected mainly belong to the Copryphoideae and Arecoideae subfamilies. All the investigated genera possess an unusually high amount of 4-hydroxybenzoic acid, which varied from 5.6 mg/g dry wt cell wall material (CWM) (Areca catechu) to 1.0 mg/g dry wt CWM (Roystonea regia). Apart from 4-hydroxybenzoic acid, ferulic acid is also found in all the genera studied along with some traces of 4-coumarate. This work presents an overview of the major wall-bound phenolics found in the mesocarp of different palms, and on the basis of this occurrence, a possible hypothesis for considering 4-hydroxybenzoic acid as a chemotaxonomic marker of this particular family can be drawn.  相似文献   

3.
This constitutes the first study to report on the relationship between pulsed UV light (PL) irradiation and the simultaneous occurrence of molecular and cellular damage in clinical strains of Candida albicans. Microbial protein leakage and propidium iodide (PI) uptake assays demonstrated significant increases in cell membrane permeability in PL-treated yeast that depended on the amount of UV pulses applied. This finding correlated well with the measurement of increased levels of lipid hydroperoxidation in the cell membrane of PL-treated yeast. PL-treated yeast cells also displayed a specific pattern of intracellular reactive oxygen species (ROS) generation, where ROS were initially localised in the mitochondria after low levels of pulsing (UV dose 0.82 μJ/cm2) before more wide-spread cytosolic ROS production occurred with enhanced pulsing. Intracellular ROS levels were measured using the specific mitochondrial peroxide stain dihydrorhodamine 123 and the cytosolic oxidation stain dichloroflurescin diacetate. Use of the dihydroethidium stain also revealed increased levels of intracellular superoxide as a consequence of augmented pulsing. The ROS bursts observed during the initial phases of PL treatment was consistent with the occurrence of apoptotic cells as confirmed by detection of specific apoptotic markers, abnormal chromatin condensation and externalisation of cell membrane lipid phosphatidylserine. Increased amount of PL-irradiation (ca. UV does 1.24-1.65 μJ/cm2) also resulted in the occurrence of late apoptotic and necrotic yeast phenotypes, which coincided with the transition from mitochondrial to cytosolic localisation of ROS and with irreversible cell membrane leakage. Use of the comet assay also revealed significant nuclear damage in similarly treated PL samples. Although some level of cellular repair was observed in all test strains during sub-lethal exposure to PL-treatments (≤ 20 pulses or UV dose 0.55 μJ/cm2), this was absent in similar samples exposed to increased amounts of pulsing. This study showed that PL-irradiation inactivates C. albicans test strains through a multi-targeted process with no evidence of microbial ability to support cell growth after ≤ 20 pulses. Implications of our findings in terms of application of PL for contact-surface disinfection are discussed.  相似文献   

4.
This study investigated the absorption of arsenic (As), sulfur (S), and phosphorus (P) in the desert plant Chilopsis linearis (Desert willow). A comparison between an inbred line (red flowered) and wild type (white flowered) plants was performed to look for differential responses to As treatment. One month old seedlings were treated for 7 days with arsenate (As2O5, AsV) at 0, 20, and 40 mg AsV L−1. Results from the ICP-OES analysis showed that at 20 mg AsV L−1, red flowered plants had 280 ± 11 and 98 ± 7 mg As kg−1 dry wt in roots and stems, respectively, while white flowered plants had 196 ± 30 and 103 ± 13 mg As kg−1 dry wt for roots and stems. At this treatment level, the concentration of As in leaves was below detection limits for both plants. In red flowered plants treated with 40 mg AsV L−1, As was at 290 ± 77 and 151 ± 60 mg As kg−1 in roots and stems, respectively, and not detected in leaves, whereas white flowered plants had 406 ± 36, 213 ± 12, and 177 ± 40 mg As kg−1 in roots, stems, and leaves. The concentration of S increased in all As treated plants, while the concentration of P decreased in roots and stems of both types of plants and in leaves of red flowered plants. X-ray absorption spectroscopy analyses demonstrated partial reduction of arsenate to arsenite in the form of As-(SX)3 species in both types of plants.  相似文献   

5.
Ultraviolet (UV) light (blacklight), which emits UV in the range of 320-400 nm, has been used worldwide in light trapping of insect pests. In this article, we test the hypothesis that one of the effects of UV light irradiation is to increase oxidative stress on insects. The effects of UV light irradiation on total antioxidant capacity, malondialdehyde (MDA) and protein carbonyl contents and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX) and glutathione-S-transferase (GST) were investigated in Helicoverpa armigera adults. The adults were exposed to UV light for various time periods (0, 30, 60 and 90 min). We found that exposure to UV light for 30 min resulted in increased total antioxidant capacity, protein carbonyl content and activities of SOD, CAT, POX and GST. When the exposure time lasted for 60 and 90 min, the protein carbonyl content and activities of CAT and GST remained significantly higher than the control. However, the antioxidant capacity and SOD activity returned to control levels, and POX activity decreased at 60 and 90 min. Our results confirm the hypothesis that UV light irradiation increases the level of oxidative stress in H. armigera adults.  相似文献   

6.
Lasia spinosa seeds were not dormant at maturity in early spring. The most favorable temperatures for germination were between 25 and 30 °C, and final percentage and rate of germination decreased with an increase or decrease in temperature. When L. spinosa seeds were transferred to 25 °C, after 60 days at 10 °C (where none of the seeds germinated), final germination increased from 0% to 78%. Seeds germinated to high percentage both in light and in dark, although dark germination took more than twice as long as in the light. During desiccation of seeds at 15 °C and 45% relatively humidity, moisture loss decreased exponentially from 2.02 to 0.13 g H2O g−1 dry wt within 16 days, and only a few seeds (12%) survived 0.13 g H2O g−1 dry wt moisture content. Seeds stored at 0.58 g H2O g−1 dry wt moisture content at four constant temperatures (4, 10, 15, and −18 °C) for up to 6 months exhibited a well-defined trend of decreasing viability with decreasing temperature. Thus, we concluded that freshly harvested L. spinosa seeds are non-dormant and recalcitrant. Also, the seeds with 0.58 g H2O g−1 dry wt moisture content could be effectively stored for a few months between 10 and 15 °C although the most appropriate temperature for wet storage appears to be 10 °C, as it is close to the minimum temperature for germination and so there will be less pre-sprouting compared to 15 °C.  相似文献   

7.
The objective of this work was to determine the transfer of phenanthrene (PHE) from air to grassland plants and soil compartments and its effects on the plant growth and symbiotic root microorganisms (arbuscular mycorrhizal fungi and Rhizobium nodules). The experimental procedure exposed Trifolium pratense L. or Lolium perenne L. to atmospheric PHE pollution (150 μg m−3) over the course of one month. PHE was transferred from the air to the leaves and to the soil surfaces. In leaves, PHE was mostly absorbed in the inner leaf tissues, representing 92% and 73% of the total PHE amount quantified in leaves, respectively for clover and ryegrass. In soils, most of PHE contamination was recovered in the top layer (0-1 cm) and did not readily diffuse into the deep layer (1-10 cm). The highest PHE concentration recovered in deep roots (1.8 and 4.5 μg g−1 dry weight (DW), respectively for clover and ryegrass) related to the lowest PHE concentration recovered in its associated soil suggested a PHE translocation from shoots to roots within the two plant species. The large PHE amount quantified in clover shoots (124 μg g−1 DW) induced a significant diminution by 30% of the shoot biomass whereas root biomass remained stable. Efficient mycorrhizal symbiosis was maintained during exposure whereas the Rhizobium nodule symbiosis was altered in the surface of soil. By contrast, neither biomass accumulation nor symbiotic association was affected in ryegrass, probably due to a lower sensitivity of this species to PHE exposure. Perspectives of carbon allocation and nitrogen nutrition perturbations are suggested in clovers.  相似文献   

8.
Feeding and starvation experiments were carried out with Clione limacina sampled in Kongsfjorden (Svalbard, Arctic) during summer 2002. Dry mass and lipid mass, lipid class and fatty acid compositions were analysed. Specimens of C. limacina used for the feeding study had a mean length of 25 mm, a dry mass (DM) of 13.7 mg, and a moderate lipid content of 12.1%DM. Animals were allowed to ingest only one individual of its exclusive prey, Limacina helicina which had 8.0 mm in diameter, 21.4 mg DM and 8.7% lipid of ash-free DM. Five days after feeding, the dry mass of C. limacina had increased from 13.7 to 25.3 mg which corresponds to an uptake of about 80% of the ash-free DM (14.3 mg) of L. helicina. Lipid mass increased from 1.5 to 3.9 mg which is almost two times more the ingested lipid from L. helicina (1.2 mg lipid). Thus, the major portion of lipids was synthesised de novo by C. limacina from non-lipid compounds. These lipids were triacylglycerols (TAG) and 1-O-alkyldiacylglycerol ethers (DAGE), increasing from low proportions of 6.1% and 5.7% to 42.3% and 25.8%, respectively. Considerable de novo synthesis was observed for the monounsaturated fatty acids 16:1(n − 7), 17:1(n − 8), 18:1(n − 9), and 18:1(n − 7) and the alkyl moiety 16:0. The increase in the polyunsaturated fatty acids 22:6(n − 3), 20:5(n − 3), and 18:4(n − 3) corresponded with the amount available by ingestion of L. helicina, supporting that C. limacina is not able to synthesise polyunsaturates. After 15 days of digestion, dry mass and lipids dropped almost back to the initial values.During the 100-day starvation experiment, two groups of animals were separately considered as storage lipid-rich and lipid-poor animals because of their large differences in the amount and proportion of TAG and DAGE. Storage lipid-rich C. limacina were only found until day 50, whereas lipid-poor animals were present throughout the experiment. In the lipid-rich specimens, the levels of TAG were about twice that of DAGE. The proportions of TAG decreased considerably during the 50 days of starvation (from 48.3% to 25.1% of total lipid). DAGE, varying between 16.5% and 20.5%, showed only a small decrease. The lipid-poor animals survived 100 days of starvation, exhibiting low initial amounts and proportions of storage lipids which were nearly exhausted at the end. In all C. limacina specimens, the total lipid content remained almost constant showing that lipid and non-lipid components were simultaneously utilised. This implies that body shrinkage may be an important adaptation to long-term starvation. Based on these results, it is possible to estimate the potential survival period of lipid-rich C. limacina under food limitation. A model, which considers maturity and reproduction (egg production), reveals that lipid-rich specimens might be able to survive up to 260 days without food.  相似文献   

9.
The effects of N and P enrichment were investigated on growth and physiological responses of dwarf Avicennia marina mangroves in a hypersaline (58 ± 8 psu) field site in Richards Bay, South Africa. It was hypothesized that at high salinities mangroves allocate more resources to roots than shoots, and that nutrient enrichment with N and P will shift resource allocation to shoots and enhance growth and productivity. In unvegetated areas of the dwarf zone, 1-year-old A. marina seedlings were planted in pots and enriched bimonthly with N, P, N + P, or remained unfertilized (control-C), and growth and morphology of plants were monitored for 2 years. Enrichment with N and N + P shifted resource allocation to shoots from 38% to 55%, and increased dry biomass accumulation by over 500%, compared to the control treatment. In the N and N + P treatments, plant height, number of leaves, leaf chlorophyll content and photosynthesis increased by over 50%, 330%, 30% and 30%, respectively, compared to the C and P treatments. Enrichment with N and N + P increased N concentrations in roots by over 60% (from 1.0 ± 0.1% to 1.6 ± 0.2% of dry mass) and in shoots by over 100% (from 1.3 ± 0.1% to 2.7 ± 02% of dry mass). Plants enriched with P alone were similar to those of the control. This study has demonstrated that dwarf A. marina in Richards Bay is N limited, and that N enrichment shifts resource allocation from roots to shoots and increases growth and productivity.  相似文献   

10.
Eleocharis acicularis was exposed to different concentrations of In, Ag, Pb, Cu, Cd, and Zn in the laboratory to assess its capability in accumulating these metals. After 15 days, 477 mg/kg dry wt. of In was accumulated by the roots; concentrations of Ag, Pb, Cu, Cd, and Zn in the shoots were 326, 1120, 575, 195, and 213 mg/kg dry wt., respectively. The results indicate that E. acicularis has the ability to accumulate these metals from water, making it a good candidate species for phytoremediation and phytomining.  相似文献   

11.
Philasterides dicentrarchi is a histophagous scuticociliate causes fatal scuticociliatosis in farmed olive flounder Paralichthys olivaceus. The average monthly prevalence of scuticociliatosis due to P. dicentrarchi infections was increased from May to July (40 ± 3.1% to 79.4 ± 1.7%) and it decreased from August to November (63 ± 2.3% to 30 ± 2.6%) in olive flounder farms at Jeju Island, South Korea during 2000-2006. The prevalence of mixed infection along with Vibrio spp. bacterial infection was 49 ± 7.2% than that of other mixed infection. At present no effective control measure for P. dicentrarchi infection has been described and large production losses continue. In the present study, formalin, hydrogen peroxide and Jenoclean chemotheraputants were used for bath treatment. Among Jenoclean at a low concentration of 50 ppm proved effective. The results were confirmed with in vitro motility assessments and morphological changes scoring system in P. dicentrarchi. On the other hand, similar trend was noted following hydrogen peroxide treatment at this concentration, but formalin was only moderately effective. Either hydrogen peroxide or Jenoclean are the promising compounds effective at low concentrations with short application time for P. dicentrarchi. Therefore, these substances were evaluated on day 10, 20 and 30 for their ability to enhance innate immune response and disease resistance against P. dicentrarchi in olive flounder after chemotheraputants bath treatment with 100 ppm for 30 min per day. All the tested immune parameters were enhanced by treatment with Jenoclean, but not formalin and hydrogen peroxide. These findings suggest that Jenoclean bath treatment can be used for ensuring the heath of cultured marine fish against internal parasites such as P. dicentrarchi.  相似文献   

12.
The functional significance of phlorotannins as ultraviolet radiation screens in brown algae is presented. Spectral analysis of zoospore suspensions of the three Arctic Laminariales Saccorhiza dermatodea, Alaria esculenta and Laminaria digitata showed strong absorption in the UV waveband, characteristic of phlorotannins. An induction in the synthesis of the UV-absorbing compound in zoospore suspensions of S. dermatodea and A. esculenta was observed as an increase in absorbance in the UV region after 8 h exposure to the whole light spectrum. Transmission of UVR was also negatively correlated with zoospore density in both these species but not in L. digitata. ‘Biofilters’ constructed from UV-transparent acrylic sheet, containing zoospore suspensions or solutions of phloroglucinol showed varying capacity to protect zoospore cultures from the lethal effects of ultraviolet radiation. Phloroglucinol protects the zoospores from damage by screening out the much harmful shorter UV-B spectra (280-290 nm). Cultured spores of A. esculenta and L. digitata after exposure to the whole light spectrum covered by filters containing phloroglucinol showed high rates of germination, unlike controls covered by seawater-only filters that showed 100% mortality. Biofilters containing zoospore suspensions act as buffers and showed variable UV-protection properties on the germination of its conspecies. At highest zoospore density (∼ 4 × 106 spores ml− 1), zoospores were observed to screen UV radiation maintaining viability among shielded spores in all species investigated. The protective function of zoospore film is, however, density-dependent in L. digitata. At lower spore density, UV-screening function in S. dermatodea and A. esculenta is attributed to their capacity to accumulate and release UV-absorbing compounds into the medium. Ultraviolet radiation transmission by zoospore suspensions of Saccorhiza and Alaria decreased during exposure to the whole light spectrum which is consistent with the earlier observation of enlarged phenolic vesicles following UVR exposure. The increase in vesicle size and the corresponding increase in UV-absorbing capacity may contribute to greater tolerance of UVR exposure in both species.  相似文献   

13.
The present study describes the effect of salinity on the triterpenoid content of the salt secretor mangrove Avicennia marina and the non-secretor Rhizophora stylosa. Mangrove seedlings were grown for eight months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. The growth of both species was increased by salt with maximal stimulation at 1.5%, and this elevation appeared to be attenuated by increasing the salt concentration above 1.5%. The triterpenoid compositions of three types of chemical structures, lupane (lupeol, lupenone), oleanane (β-amyrin, taraxerol, germanicol), and ursane (α-amyrin), were studied. In addition, the phytosterol components campesterol, stigmasterol and β-sitosterol were analyzed. The total triterpenoid contents in the roots and leaves of A. marina for the 0% group were 87.0 and 66.2 μg g−1, respectively, and increased significantly to 173.1 and 142.6 μg g−1 with 3% salinity. The higher salinity also significantly increased the total concentration of phytosterols in the leaves and roots of this species. A similar increase in the concentration of both triterpenoids and phytosterols was observed in the roots and leaves of R. stylosa with increasing salt concentration. Thus, the triterpenoid concentration was increased by salinity in the roots and leaves of both A. marina and R. stylosa irrespective of their differences in salt management by salt excretion or by a non-excretion mechanism. Comparison of the triterpenoid concentration in four species of growing mangrove seedlings revealed a correlation between the total triterpenoid content and the salt tolerance based on the habitat zonation on Iriomote Island. A. marina thrives closest to sea and had the highest content of triterpenoids (173.1 μg g−1 in 3% salt group). Therefore, it is likely that the triterpenoid content play an important role in mangrove plants for protection from salinity in both salt-secretors and non-secretors.  相似文献   

14.
Morphological, anatomical and physiological summer and winter leaf traits of Cistus incanus subsp. incanus, C. salvifolius and C. monspeliensis growing at the Botanical garden of Rome were analyzed. With regard to differences between summer and winter leaves of the considered species, leaf thickness (L) was 21% higher in summer than in winter leaves (mean of the considered species) and this increase was mostly the result of the increased palisade parenchyma thickness over the spongy parenchyma one (24 and 16% higher in summer than in winter leaves, respectively). Leaf mass area (LMA) and leaf tissue density (LTD) were 38% and 17% higher in summer than in winter leaves, respectively (mean of the considered species). The photosynthetic rate (PN), stomatal conductance (gs) and chlorophyll content (Chl) of summer leaves were 54%, 17% and 14% lower, respectively, than in winter leaves. C. monspeliensis summer leaves had the highest LMA, LTD, adaxial cuticle thickness (14.6 ± 1.8 mg cm−2, 1091 ± 94 mg cm−3, and 5.8 ± 1.7 μm, respectively) and the lowest mesophyll intercellular spaces (fias 38 ± 3%). Moreover, C. monspeliensis had the highest PN in summer (2.6 ± 0.1 μmol m−2 s−1) and C. incanus the highest PN and WUE (84% and 59% higher than the other species) in the favorable period, associated to a higher fias (42 ± 2%). C. salvifolius had the highest PN (54% higher than the other species) in winter. The plasticity index could allow a better interpretation of the habitat preference of the considered species. The physiological plasticity (PIp = 0.39, mean value of the considered species) was higher than the morphological (PIm = 0.22, mean value) and anatomical (PIa = 0.13, mean value) plasticity. Moreover, among the considered species, C. salvifolius and C. incanus are characterized by a larger PIa (0.14, mean value) which seems to be correlated with their wider ecological distribution and the more favorable conditions of the environments where they naturally occur. The highest PIm (0.29) of C. monspeliensis indicates that it can play a high adaptive role in highly stressed environments, like fire degraded Mediterranean areas in which it occurs.  相似文献   

15.
The two-spotted spider mite, Tetranychus urticae was exposed to UV-C (250 nm), UV-B (300 nm), and UV-A (350 nm). In non-diapausing females, the median effective doses for 50% mortality plus escape incidence (ED50) were 21 (UV-C) and 104 kJ m−2 (UV-B); those for 50% oviposition rate in continuous darkness-treated mites were 6.2 (UV-C) and 41 kJ m−2 (UV-B). No significant effects of UV-A on mortality and oviposition rate were observed. The ED50 values for UV-B were similar to the natural UV-B observed for 2-5 days in summer when T. urticae inhabits the undersides of leaves. Therefore, T. urticae possibly uses leaves as a filter to avoid the deleterious effects of UV-B. In diapausing females, low mortality was observed even at high doses of UV radiation, but more than half escaped even at low doses. The orange body color of diapausing females results from accumulation of carotenoids, a scavenger for UV-induced reactive oxygen species; this may explain the low mortality of diapausing females. Diapausing females may overcome the deleterious effects of UV-B during winter in the absence of leaves by emigrating to UV-free environments and by accumulating carotenoids.  相似文献   

16.
Cassava (Manihot esculanta) peel is routinely fed to ruminants in Ghana and most parts of Africa, but the low protein content and lack of suitable protein supplements limits its full exploitation in small ruminant production systems. This study assessed the suitability (degradation characteristics and synchrony between nitrogen release and organic matter degradation) of the leaves of three browse plants, chaya (Cnidoscolus aconitifolius), ficus (Ficus exasperata), and terminalia (Terminalia catappa), as supplements for sheep fed a cassava peel-based diet. Four ruminally fistulated Djallonké wethers were used in a randomized complete block design experiment to determine ruminal disappearance of dry matter (DM), organic matter (OM) and nitrogen (N) from the three leaves and from cassava peels. For chaya, ficus and terminalia, OM content was 93.1%, 83.8% and 90.3% (P < 0.05), respectively, whereas N was 3.4%, 3.1% and 1.7% (P < 0.05, DM basis). The OM and N content in cassava peel was 95.3% and 1.0%, respectively. Ruminal DM disappearance of chaya, ficus, terminalia and cassava peel after 24 h of incubation was 79.0%, 36.4%, 48.0%, and 43.0% (P < 0.05), respectively. The ratio of N released from chaya leaves to OM from cassava peel was 1:16 or lower during 24 h ruminal incubation, compared to 1:31 during the first 8 h and 1:25 after 12 h of incubation of ficus leaves. The ratio for terminalia leaves from 4 to 24 h of incubation ranged between 1:51 and 1:63. The high N content and ideal synchronous release of N and OM ratio of 1:33 (N:OM) made ficus leaves the most suitable supplement among the three browse leaves, with the potential to supply adequate N to optimize ruminal microbial protein synthesis in sheep on a cassava peel-based diet.  相似文献   

17.
Previously starved urchins, Lytechinus variegatus, (36.0 ± 0.8 (SE) mm test diameter) were held in replicated (3) 10-L aquaria with artificial seawater at 22 ± 2  °C and 32‰ salinity and fed three diet treatments. Urchins were fed diets containing 9 : 35, 20 : 23 or 31 : 12% dry protein: % dry carbohydrate (P : C) ad libitum for a 65-day period. Gonads from urchins fed the 9 : 35 P : C diet had similar organic, lower ash, and lower water content than urchins fed the 31 : 12 P : C protein diet. Water content varied with both diet and nutritional history; consequently, water content may have limited value as a predictor of gonad nutritional status. Protein and carbohydrate concentrations in the gonad were directly related to the dietary composition of these nutrients; gonad lipids did not vary with diet. Excess carbohydrates are frequently stored as fats in fish and mammals but this does not appear to be the case in L. variegatus. Test carbohydrate storage and gut protein storage also reflected dietary composition. Image analysis of ovaries indicated decreased nutritive phagocyte volume, increased germinal epithelium volume and larger oocyte diameters in urchins fed high protein, low carbohydrate diets. Analysis of testes also indicated decreased nutritive phagocyte volume and increased gamete volume with urchins fed high protein, low carbohydrate diets, but differences among treatments were less obvious than in ovaries. This study suggests that high protein, low carbohydrate diets promote gamete growth and development. In addition, the biochemical and gametic composition of gonads can be altered by manipulating dietary composition. This could affect the quality and value of sea urchin roe for human consumption.  相似文献   

18.
Physiological performance (feeding, metabolism, growth and excretion) across a broad range of salinity (5-30 psu) were determined for the benthic amphipod Gammarus oceanicus, a species of marine origin inhabiting brackish waters of the southern Baltic Sea. Feeding rates decreased with increasing salinity, whereas the nutritive absorption efficiency increased. Faeces production and ammonia excretion rates decreased strongly from the lowest to the highest salinity by 60% and 58%, respectively. Increasing salinity was accompanied by a reduction in the metabolic rate from 438 J g− 1 dry wt d− 1 (5.1 mW g− 1) at 5 psu to 245 J g− 1 (2.8 mW g− 1) at 30 psu. Individuals were able to maintain a positive energy balance at all experimental salinities. The greatest values for scope for growth were recorded at the environmental salinity (7 psu) with a mean of 769 J g− 1 dry wt d− 1 (8.7 mW g− 1).  相似文献   

19.
Das P  Lei W  Aziz SS  Obbard JP 《Bioresource technology》2011,102(4):3883-3887
Biomass productivity and fatty acid methyl esters (FAME) derived from intracellular lipid of a Nannochloropsis sp. isolated from Singapore’s coastal waters were studied under different light wavelengths and intensities. Nannochloropsis sp., was grown in both phototrophic and mixotrophic (glycerol as the carbon source) culture conditions in three primary monochromatic light wavelengths, i.e., red, green and blue LEDs, and also in white LED. The maximum specific growth rate (μ) for LEDs was blue > white > green > red. Nannochloropsis sp. achieved a μ of 0.64 and 0.66 d−1 in phototrophic and mixotrophic cultures under blue lighting, respectively. The intracellular fatty acid composition of Nannochloropsis sp. varied between cultures exposed to different wavelengths, although the absolute fatty acid content did differ significantly. Maximum FAME yield from Nannochloropsis sp. was 20.45% and 15.11% of dry biomass weight equivalent under photo- and mixotrophic culture conditions respectively for cultures exposed to green LED (550 nm). However, maximum volumetric FAME yield was achieved for phototrophic and mixotrophic cultures (i.e., 55.13 and 111.96 mg/l, respectively) upon cell exposure to blue LED (470 nm) due to highest biomass productivity. It was calculated that incremental exposure of light intensity over the cell growth cycle saves almost 20% of the energy input relative to continuous illumination for a given light intensity.  相似文献   

20.
The leaf reflectance spectra (280–887 nm) of two heterophyllous aquatic plant species Polygonum amphibium (L.) and Nuphar luteum (L.) were compared and their relation to physical properties of the leaves examined. In P. amphibium contrasting environmental conditions along water–land gradient affected the majority of anatomical and morphological properties of leaves, but less differences were observed in photosynthetic pigment and total flavonoid contents. Leaf mass per area (LMA), palisade mesophyll, leaf thickness, trichome length and anthocyanin content per dry mass were correlated to the different parts of spectra. In N. luteum natant and submerged leaves differed significantly in all measured parameters. Chlorophyll a, anthocyanin and carotenoid contents per dry mass were related to reflectance in the red region, while leaf thickness, anthocyanin and total flavonoid contents per leaf area were related to reflectance in the near infrared region. Redundancy Analysis (RDA) indicated that in P. amphibium the average length of trichomes and LMA explained 72% and 6% variability of the spectra, whereas in N. luteum anthocyanin content per dry mass, explained 57% variability of the spectra. The comparison of natant leaves of both species showed that they were more similar than different leaf types within the single species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号