首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang P  Liu D  Jiang S  Gu X  Zhou Z 《Chirality》2007,19(2):114-119
Amylopectin-tris(phenylcarbamate) was synthesized and coated to aminopropylsilica to prepare chiral stationary phase. The chiral separations of fungicide enantiomers were performed by the CSP using high-performance liquid chromatography. Mobile phase was n-hexane and isopropanol, and flow rate was 1.0 ml/min. Detection wavelength was 230 nm. The influence of the percentage of isopropanol in the mobile phase on the separations was studied. Twelve chiral fungicides were tested and seven of them were found to show stereoselectivity on the CSP. The enantiomers of metalaxyl and benalaxyl got near baseline separations and myclobutanil, hexconazole, tebuconazole, uniconazole, and paclobutrazol enantiomers were completely separated. The decreasing percentage of isopropanol in the mobile phase resulted in better separation and longer analysis time. The enantiomers were identified by a circular dichroism (CD) detector and the CD spectra of the individual enantiomers were also studied by online scanning.  相似文献   

2.
To chiroptically characterize the enantiomers of omeprazole and some structurally related benzimidazoles with circular dichroism (CD), preparative chiral liquid chromatography was utilized for the isolation of the pure enantiomers. A limited analytical column screen was performed identifying Kromasil-CHI-TBB and the amylose-based phases Chiralpak AD and AS as possible chiral stationary phases (CSPs) for the preparative scale separation of the enantiomers of the different benzimidazoles. Optimization of the chromatographic conditions with respect to retention, enantioseparation, and resolution was achieved by variation of the mobile phase constituents as well as of temperature. Because of the lability of the compound in slightly acidic media, supercritical fluid chromatography (SFC) could not be applied for a preparative scale separation of the enantiomers. The separation of omeprazole was optimized to give high throughput (2.6 kg racemate/kg CSP/day) and high enantiomeric excess of the obtained isomers. The absolute configurations of the pure enantiomers of rabeprazole, lansoprazole, and pantoprazole were determined from the strong correlation to the CD spectrum of (+)-(R)-omeprazole. For all the compounds, the (+)-enantiomers displayed similar chiroptical features as (+)-(R)-omeprazole and were thus assigned the (R)- configuration. Elution order of the optical isomers was monitored by injecting racemic solutions spiked with one of the isomers and also by an on-line laser polarimeter. Both the type of CSP and also the mobile phase constituents had a strong effect on elution order of the enantiomers.  相似文献   

3.
Cellulose-tris (3,5-dimethylphenylcarbamate; CDMPC) was synthesized and coated on aminopropylsilica to prepare chiral stationary phase (CSP). Normal-phase high-performance liquid chromatography (HPLC) methods for the resolutions of five chiral triazole pesticides, diniconazole, tebuconazole, hexaconazole, triadimefon and flutriafol, on the CSP were developed. Several operating parameters such as mobile phase composition, modifier and column temperature were studied for the optimization of the resolutions. Better separations were achieved using 2% iso-butanol for diniconazole, 2% ethanol for tebuconazole, 2% iso-propanol for hexaconazole, 1% n-butanol for triadimefon and 2% n-propanol for flutriafol as modifiers in n-hexane at 0 degrees C with the resolution factors (Rs) of 1.62, 1.66, 2.46, 1.68 and 1.98, respectively. Low temperature was better for the resolutions. Validation of the methods included linearity and precision.  相似文献   

4.
A chiral stationary phase (CSP) recently developed by bonding (diphenyl-substituted 1,1'-binaphthyl) crown ether to silica gel for the liquid chromatographic separation of enantiomers was applied to the resolution of investigational fluoroquinolone antibacterial agents including gemifloxacin (formerly LB20304a). All fluoroquinolone compounds used in this study were resolved quite well on the CSP. Especially, the resolution of gemifloxacin and its analogs on the CSP was excellent and even greater than that on the commercial Crownpak CR(+). The resolution was found to be dependent on the type and the content of organic, acidic, and inorganic modifiers added to the mobile phase and on the column temperature.  相似文献   

5.
Yubing Tang 《Chirality》1996,8(1):136-142
Eight randomly selected pharmaceuticals, which included ibuprofen, ketoprofen, albuterol, acebutolol, propafenone, betaxolol, methylphenidate, and homatropine, were directly separated on a cellulose tris(4-methylbenzoate) chiral stationary phase (CSP) without derivatization via normal phase mode HPLC. Enantioresolution was achieved by the optimization of the type and the ratio of mobile phase modifiers and additives. The modifiers included alcohols; the mobile phase additives were trifluoroacetic acid (TFA) and triethylamine (TEA). It was found that methanol and ethanol were superior to isopropanol as mobile phase modifiers for enhancing chiral separation of some of the chiral drugs. The results also demonstrated that TFA has a dominant effect on chiral separations for both acidic and basic chiral drugs, although for some basic drug such as homatropine, TEA was more beneficial at improving enantioseparation. The separation of acebutolol enantiomers was achieved for the first time by adding both TFA and TEA to the mobile phase. The purpose of this paper is to demonstrate that the applicability of cellulose based CSPs can be expanded by controlling the mobile phase compositions through the addition of trace amounts of achiral additives and the selection of the appropriate alcoholic modifier. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Pyriproxyfen is a chiral insecticide, and over 10 metabolites have been identified in the environment. In this work the separations of the enantiomers of pyriproxyfen and its six chiral metabolites were studied by high‐performance liquid chromatography (HPLC). Both normal phase and reverse phase were applied using the chiral columns Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralcel OD‐RH, Chiralpak AY‐H, Chiralpak AD‐H, Chiracel OJ‐H, (R,R)‐Whelk‐O 1, and Lux Cellulose‐3. The effects of the chromatographic parameters such as mobile phase composition and temperature on the separations were investigated and the enantiomers were identified with an optical rotation detector. The enantiomers of these targets could obtain complete separations (resolution factor Rs > 1.5) on Chiralpak IA, Chiralpak IB, Chiralcel OD, Chiralpak AY‐H, or Chiracel OJ‐H under normal conditions. Chiralcel OJ‐H showed the best chiral separation results with n‐hexane as mobile phase and isopropanol (IPA) as modifier. The simultaneous enantiomeric separation of pyriproxyfen and four chiral metabolites was achieved on Chiralcel OJ‐H under optimized condition: n‐hexane/isopropanol = 80/20, 15°C, flow rate of 0.8 ml/min, and UV detection at 230 nm. The enantiomers of pyriproxyfen and the metabolites A , C , and D obtained complete separations on Chiralpak IA, Chiralpak IC, and Lux Cellulose‐3 under reverse phase using acetonitrile/water as the mobile phase. The retention factors (k) and selectivity factors (α) decreased with increasing temperature, and the separations were better under low temperature in most cases. The work is of significance for the investigation of the environmental behaviors of pyriproxyfen on an enantiomeric level. Chirality 28:245–252, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
《Chirality》2017,29(7):340-347
Acrylamide (AM) was copolymerized with ethylene glycol dimethacrylate (EGDMA) in the presence of (R )‐1,1′‐binaphthalene‐2‐naphthol (BINOL) as the template molecules on the surface of silica gel by a free radical polymerization to produce a chiral stationary phase based on the surface molecularly imprinted polymer (SMIP‐CSP). The SMIP‐CSP showed a much better separation factor (α = 4.28) than the CSP based on the molecularly imprinted polymer (MIP‐CSP) without coating on the silica gel (α = 1.96) during the chiral separation of BINOL enantiomers by high‐performance liquid chromatography. The influence of the pretreatment temperature and the content of the template molecule ((R )‐BINOL) of the SMIP‐CSP, and the mobile phase composition on the separation of the racemic BINOL were systematically investigated.  相似文献   

8.
Mey B  Paulus H  Lamparter E  Blaschke G 《Chirality》1999,11(10):772-780
The enantiomers of the anorectic drug amfepramone [rac-diethylpropion, rac-2-(diethylamino)-1-phenyl-1-propanone; rac-DEP] were separated in the preparative scale by crystallization. With enantiopure di-O-benzoyltartaric acid as salt-forming chiral selector, diastereoisomeric salts of DEP enantiomers with a final purity of more than 97.5% were obtained. Analytical liquid chromatographic and electrophoretic methods for the control of the enantiomeric purity and the stoichiometry of the salts were developed. The enantioseparation of rac-DEP by capillary electrophoresis (CE) using hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral discriminator and phosphate buffer (pH 3.3) as run buffer led to good separations. HPLC methods were developed using polysaccharide chiral stationary phases (CSP). The separation of the two enantiomers and the two main degradation products (1-phenyl-1,2-propanedione and propiophenone), known from solid and liquid pharmaceutical preparations, was attained in one run on the silica-based CSP cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD). The conditions which might affect the enantioselectivity and the quality of the enantiomeric separation were investigated for Chiralcel OD and the related CSP amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD). Both CSPs showed very similar chromatographic properties. The separation factors could be influenced significantly by varying the polar organic modifier added to the mobile phase.  相似文献   

9.
As an important intermediate of prostaglandins and entecavir, optically pure Corey lactone diol (CLD) has great value in the pharmaceutical industry. In this work, the enantioseparation of (±)‐CLD was evaluated using high‐performance liquid (HPLC) and supercritical fluid chromatography (SFC). In HPLC, the separations of CLD enantiomers on polysaccharide‐based chiral stationary phases with both normal phase and polar organic phase were screened. And the conditions for the enantioseparation were optimized in HPLC and SFC, including the selection of mobile phase, temperature, back‐pressure, and other conditions. More important, it was found that the chiral resolutions were greatly enhanced by the increase of the coating amount of ADMPC (amylose tris‐(3,5‐dimethylphenylcarbamate)) under both HPLC and SFC conditions, which can lead to the increase of the productivity and the decrease of the solvent consumption. The preparations of optically pure CLD were evaluated on a semi‐preparative (2 × 25 cm) column packed with 30% ADMPC‐coated CSP under HPLC and SFC conditions. Preparative performances in terms of kkd are 1.536 kg racemate/kg CSP/day and 1.248 kg racemate/kg CSP/day in HPLC and SFC, respectively.  相似文献   

10.
The direct HPLC enantioseparation of Mianserin and a series of aptazepine derivatives is accomplished on polysaccharide-based chiral stationary phases (CSPs). The resolutions are performed on the coated-type Chiralcel OD and Chiralpak AD CSPs and on the first commercially available immobilized-type Chiralpak IA CSP, in normal-phase and polar-organic modes. The complete separation of enantiomers of all racemates investigated was successfully achieved under at least one of CSP/eluent combinations employed. Pure alcohols such ethanol or 2-propanol, with a fixed percentage of DEA added, serve as valuable alternatives to the more common n-hexane-based normal-phase eluents in resolution of Mianserin on the AD CSP. In order to study the chiroptical properties of aptazepine derivatives, chromatographic resolutions are carried out at semipreparative scale using Chiralpak AD and Chiralpak IA as CSPs. Nonconventional dichloromethane-based eluents have permitted to expand the chiral resolving ability of the immobilized Chiralpak IA CSP and to perform mg-scale enantioseparations with an analytical-size column. Assignment of the absolute configuration of the separated enantiomers is empirically established by comparing their chiroptical data with those of structurally related Mianserin.  相似文献   

11.
The drug chirality is attracting increasing attention because of different biological activities, metabolic pathways, and toxicities of chiral enantiomers. The chiral separation has been a great challenge. Optimized high‐performance liquid chromatography (HPLC) methods based on vancomycin chiral stationary phase (CSP) were developed for the enantioseparation of propranolol, atenolol, metoprolol, venlafaxine, fluoxetine, and amlodipine. The retention and enantioseparation properties of these analytes were investigated in the variety of mobile phase additives, flow rate, and column temperature. As a result, the optimal chromatographic condition was achieved using methanol as a main mobile phase with triethylamine (TEA) and glacial acetic acid (HOAc) added as modifiers in a volume ratio of 0.01% at a flow rate of 0.3 mL/minute and at a column temperature of 5°C. The thermodynamic parameters (eg, ΔH, ΔΔH, and ΔΔS) from linear van 't Hoff plots revealed that the retention of investigated pharmaceuticals on vancomycin CSP was an exothermic process. The nonlinear behavior of lnk′ against 1/T for propranolol, atenolol, and metoprolol suggested the presence of multiple binding mechanisms for these analytes on CSP with variation of temperature. The simulated interaction processes between vancomycin and pharmaceutical enantiomers using molecular docking technique and binding energy calculations indicated that the calculated magnitudes of steady combination energy (ΔG) coincided with experimental elution order for most of these enantiomers.  相似文献   

12.
An on-column HPLC procedure using a chiral stationary phase (CSP) was developed for the determination of rate constants and free energy barriers of enantiomerization of (+/-)IDRA21. Subsequently, the HPLC method was applied for investigation of two structurally related chiral compounds. The individual enantiomers of the studied compounds were isolated in parallel by preparative HPLC and rate constants and free energy barriers of enantiomerization were determined in different solvents. The on-column enantiomerization data revealed that CSP induces different rate constants for the two enantiomers. The results generated off-line were used to determine the influence of solvents on the racemization of (+) and (-) IDRA21 and to gain further insight into the enantiomerization mechanism of chiral 3,4-dihydro-1,2,4-benzothiadiazine 1,1-dioxide type compounds.  相似文献   

13.
A residual silanol group-protecting chiral stationary phase (CSP) based on optically active (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 was successfully applied to the resolution of racemic cathinone and it analogue aryl alpha-amino ketones. The separation factors (alpha) and the resolutions (Rs) for 12 analytes were in the ranges of 2.85-16.12 and 6.49-19.64, respectively. The chromatographic resolution behaviors were investigated as a function of the content and type of organic and acidic modifiers and the ammonium acetate concentration in aqueous mobile phase. The practical usefulness of the CSP in the determination of the enantiomeric purity of optically active cathinone and in the preparative resolution of racemic cathinone was demonstrated.  相似文献   

14.
Hyun MH  Song Y  Cho YJ  Choi HJ 《Chirality》2008,20(3-4):325-329
A doubly tethered chiral stationary phase (CSP) prepared by bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid to doubly tethered primary aminoalkyl silica gel was used for the resolution of various beta-amino acids. All the beta-amino acids tested were resolved quite well, the separation (alpha) and the resolution factors (RS) being in the ranges 1.34-2.09 and 2.52-7.45, respectively, with a mobile phase of methanol-water (50:50, v/v) containing 10 mM acetic acid. The chiral recognition efficiency of the doubly-tethered CSP was found to be generally superior to that of the corresponding singly-tethered CSP in the resolution of beta-amino acids. The chiral recognition behaviors for the resolution of beta-amino acids on the doubly tethered CSP were examined by varying the type and content of organic and acidic modifiers in the aqueous mobile phase and the column temperature.  相似文献   

15.
Pidotimod, a synthetic dipeptide, has two chiral centers with biological and immunological activity. Its enantiomers were characterized by x‐ray crystallographic analysis. A chiral stationary phase (CSP) Chiralpak‐IA based on amylose derivatized with tris‐(3, 5‐dimethylphenyl carbamate) was used to separate pidotimod enantiomers. The mobile phase was prepared in a ratio of 35:65:0.2 of methyl‐tert‐butyl‐ether and acetonitrile trifluoroaceticacid. In addition, thermodynamics and molecular docking methods were used to explain the enantioseparation mechanism by Chiralpak‐IA. Thermodynamic studies were carried out from 10 to 45 °C. In general, both retention and enantioselectivity decreased as the temperature increased. Thermodynamic parameters indicate that the interaction force between the pidotimod enantiomer (4S, 2'R) and IA CSP is stronger and their complex model is more stable. According to GOLD molecular docking simulation, Van der Waals force is the leading cause of pidotimod enantiomers separation by IA CSP. Chirality 27:802–808, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The enantioselective effects of the chiral pesticide metalaxyl on soil enzyme activity were investigated. Incubation experiments were conducted to investigate the effects of metalaxyl enantiomers at different concentrations on the activities of urease, invertase, and catalase as well as the type of activity change (activation vs. inhibition) at different times during incubation. The results indicated that the effects of metalaxyl on the activity of soil enzymes were not only related to the concentration of the enantiomers and soil incubation time, but also to the chiral configuration, suggesting the effects were enantioselective. A pattern of inhibition‐recovery‐slight stimulation was observed in urease activity of the soil samples treated with metalaxyl enantiomers, but the effects of (–) ‐R‐metalaxyl were stronger than those of (+)‐S‐metalaxyl at the same concentration. Invertase activity in soil samples treated with metalaxyl enantiomers initially sharply decreased before finally returning to the normal level, and the effects of (+)‐S‐metalaxyl were stronger than those of (–) ‐R‐metalaxyl at the same concentration. Metalaxyl enantiomers influenced catalase activity in a pattern of slight stimulation‐inhibition‐recovery, and the effects of (–) ‐R‐metalaxyl were stronger than those of (+)‐S‐metalaxyl at the same concentration.  相似文献   

17.
Fenticonazole is a chiral antifungal agent, used in therapy as the racemic mixture. The investigation on the chirality of fenticonazole is reported in this study. rac-Fenticonazole was resolved by HPLC and by capillary electrophoresis (CE). The chiral stationary phase (CSP), used in HPLC, was Daicel OD-H, a commercial phase, which allowed the separate collection of the two enantiomers. The chiral selectors used for CE were some cyclodextrin derivatives. The analysis time required from CE was about the half the HPLC enantioseparation time. The biological activity of the rac-mixture and each individual enantiomer was tested against Cryptococcus neoformans and two Aspergillus nidulans strains. The minimum inhibitory concentration (MIC) evaluation showed that the eutomer was the enantiomer chromatographically more retained and had a longer migration time in the electrophoretic enantioseparation. The CD spectrum of the eutomer showed a positive Cotton effect.  相似文献   

18.
The enantiomeric separation of eight pesticides including bitertanol ( 1 ), diclobutrazol ( 2 ), fenbuconazole ( 3 ), triticonazole ( 4 ), imazalil ( 5 ), triapenthenol ( 6 ), ancymidol ( 7 ), and carfentrazone‐ethyl ( 8 ) was achieved, using normal‐phase high‐performance liquid chromatography on two cellulosed‐based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol ( 1 ), triticonazole ( 4 ), imazalil ( 5 ) with the (+)‐enantiomer eluted first and fenbuconazole ( 3 ) with the (—)‐enantiomer eluted first on Lux Cellulose‐2 and Lux Cellulose‐3. (+)‐Enantiomers of diclobutrazol ( 2 ) and triapenthenol ( 6 ) were first eluted on Lux Cellulose‐2. (—)‐Carfentrazone‐ethyl ( 8 ) were eluted first on Lux Cellulose‐2 and Lux Cellulose‐3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)‐Ancymidol was first eluted on Lux Cellulose‐2 while on Lux Cellulose‐3 (—)‐ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 27:32–38, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Forjan DM  Gazić I  Vinković V 《Chirality》2007,19(6):446-452
The chiral discrimination ability of two recently prepared chiral stationary phases (CSP 1 and CSP 2), based on a leucine derived chiral selector, was tested for the enantiomers of dihydropyrimidone (DHPM) derivatives and compared with the commercially available Hyun-leucine CSP 3 and classical Pirkle-leucine CSP 4. By combining all of these CSPs, the enantiomers of all DHPM derivatives used in this study can be properly resolved. Particularly good enantioresolutions were achieved for thioureide derivatives, such as Monastrol. The results presented show that sulfur-aromatic interactions are meritorious for these very good separations.  相似文献   

20.
Undecanoyl bound 3,5-dinitrobenzoyl-(S,R)-1,2-diphenylethane-1,2-diamine [(1S,2R)-DNB-DPEDA] as chiral selector (SO) has been synthesized and used as a chiral stationary phase (CSP II) for normal-phase enantioselective HPLC. It is compared with the already published diastereomeric (1S,2S)-DNB-DPEDA-derived CSP I and with the “standard” Pirkle DNB-(R)-phenylglycine-derived CSP III. Chromatographic data for about 100 racemic analytes reveal that CSP II is able to separate especially well enantiomers of derivatized aromatic carboxylic acids and analytes having a benzyl substituent bound at the chiral center. However, CSP I was found to be superior to CSP II and III in its general applicability and its ability to resolve enantiomers of heterocyclic drugs. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号