首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The mechanism of action of hepatic triacylglycerol lipase (EC 3.1.1.3) was examined by comparing the hydrolysis of a water-soluble substrate, tributyrin, with that of triolein by hepatic triacylglycerol lipase purified from human post-heparin plasma. The hydrolyzing activities toward tributyrin and triolein were coeluted from heparin-Sepharose at an NaCl concentration of 0.7 M. The maximal velocity of hepatic triacylglycerol lipase (Vmax) for tributyrin was 17.9 mumol/mg protein per h and the Michaelis constant (Km) value was 0.12 mM, whereas the Vmax for triolein was 76 mumol/mg per h and the Km value was 2.5 mM. The hydrolyses of tributyrin and triolein by hepatic triacylglycerol lipase were inhibited to similar extends by procainamide, NaF, Zn2+, Cu2+, Mn2+, SDS and sodium deoxycholate. Triolein hydrolysis was inhibited by the addition of tributyrin. Triolein hydrolysis was also inhibited by the addition of dipalmitoylphosphaidylcholine vesicles. In contrast, the additions of triolein emulsified with Triton X-100 and dipalmitoylphosphatidylcholine vesicles enhanced the rate of tributyrin hydrolysis by hepatic triacylglycerol lipase. In the presence of dipalmitoylphosphatidylcholine, the Vmax and Km values of hepatic triacylglycerol lipase for tributyrin were 41 mumol/mg protein per h and 0.12 mM, respectively, indicating that the enhancement of hepatic triacylglycerol lipase activity for tributyrin by dipalmitoylphosphatidycholine vesicles was mainly due to increase in the Vmax. The enhancement of hepatic triacylglycerol lipase activity for tributyrin by phospholipid was not correlated with the amount of tributyrin associated with the phospholipid vesicles. On Bio-Gel A5m column chromatography, glycerol tri[1-14C]butyrate was not coeluted with triolein emulsion, and hepatic triacylglycerol lipase activity was associated with triolein emulsion even in the presence of 2 mM tributyrin. These results suggest that hepatic triacylglycerol lipase has a catalytic site for esterase activity and a separate site for lipid interface recognition, and that on binding to a lipid interface the conformation of the enzyme changes, resulting in enhancement of the esterase activity.  相似文献   

2.
Hepatic triacylglycerol lipase (EC 3.1.1.3) hydrolyzes water-insoluble fatty acid esters, e.g., trioleoylglycerol (lipase activity) and water-soluble fatty acid esters, e.g., tributyrin (esterase activity). Esterase activity of hepatic triacylglycerol lipase is enhanced by triolein emulsion and phospholipid vesicles [1]. The catalytic mechanism and structure of human hepatic triacylglycerol lipase isolated from human post-heparin plasma and the effect of trypsin treatment on the lipase and esterase activities of the enzyme were examined. Treatment of hepatic triacylglycerol lipase with trypsin resulted in loss of its lipase activity, but had no effect on its esterase activity. Chromatography of hepatic triacylglycerol lipase on Bio-Gel A5m showed that hepatic triacylglycerol lipase binds to dipalmitoylphosphatidylcholine vesicles. However, on chromatography of the trypsin-treated enzyme after incubation with dipalmitoylphosphatidylcholine vesicles, a part of hepatic triacylglycerol lipase that retained esterase activity was eluted separately from the dipalmitoylphosphatidylcholine vesicles. Addition of vesicles of dipalmitoylphosphatidylcholine to the trypsin-treated enzyme did not enhance its esterase activity. These results are consistent with the hypothesis that hepatic triacylglycerol lipase has a catalytic site that hydrolyzes tributyrin and a lipid interface recognition site, and that these sites are different: trypsin modified the lipid interface recognition site of the hepatic triacylglycerol lipase but not the catalytic site.  相似文献   

3.
An intracellular glycerol ester hydrolase (lipase) from Propionibacterium shermanii was recovered from cell-free extracts and purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography on diethylaminoethylcellulose. Maximum enzyme activity was observed at pH 7.2 and 47 C when an emulsion of tributyrin was used as substrate. The enzyme was stable between pH 5.5 and 8. Heating the enzyme solution at 45 C for 10 min resulted in a 75% decrease in activity. Maximum rate of hydrolysis of triglycerides was observed on tripropionin, followed in order by tributyrin, tricaproin, and tricaprylin. The lipase was strongly inhibited by mercury and arsenicals, but specific sulfhydryl reagents had little or no inhibiting effect on the enzyme activity. The enzyme also showed some esterase activity, but the hydrolysis of substrates in solution was small as compared to the hydrolysis of substrates in emulsion.  相似文献   

4.
Quantitative spectrophotometric assay for staphylococcal lipase.   总被引:6,自引:0,他引:6       下载免费PDF全文
We report the development of a specific spectrophotometric assay for the quantitative determination of lipase activity in Staphylococcus aureus. The assay is based on the rate of clearance of a tributyrin emulsion, and it can detect as little as 1.0 micrograms of purified Pseudomonas lipase per ml. By comparison with the reaction rates obtained with Pseudomonas lipase, we calculated that S. aureus PS54C and S6C produce approximately 15 and 60 micrograms of extracellular lipase per ml, respectively. Neither PS54, which is lysogenized with the converting bacteriophage L54a and is consequently lipase negative (Lip-), nor KS1905, a Lip- transpositional mutant of strain S6C, was positive in our spectrophotometric assay. The specificity of the spectrophotometric tributyrin assay was confirmed with a triolein plate assay; supernatants from S6C and PS54C hydrolyzed triolein, while supernatants from PS54 and KSI905 did not. In contrast to the results of the spectrophotometric tributyrin assay, all enzyme preparations tested (including commercially purified esterase) were positive when examined by a tributyrin plate assay. The lack of specificity in the tributyrin plate assay emphasizes the need to interpret the results of tributyrin lipolysis kinetically for assessing lipase activity in S. aureus.  相似文献   

5.
We report the development of a specific spectrophotometric assay for the quantitative determination of lipase activity in Staphylococcus aureus. The assay is based on the rate of clearance of a tributyrin emulsion, and it can detect as little as 1.0 micrograms of purified Pseudomonas lipase per ml. By comparison with the reaction rates obtained with Pseudomonas lipase, we calculated that S. aureus PS54C and S6C produce approximately 15 and 60 micrograms of extracellular lipase per ml, respectively. Neither PS54, which is lysogenized with the converting bacteriophage L54a and is consequently lipase negative (Lip-), nor KS1905, a Lip- transpositional mutant of strain S6C, was positive in our spectrophotometric assay. The specificity of the spectrophotometric tributyrin assay was confirmed with a triolein plate assay; supernatants from S6C and PS54C hydrolyzed triolein, while supernatants from PS54 and KSI905 did not. In contrast to the results of the spectrophotometric tributyrin assay, all enzyme preparations tested (including commercially purified esterase) were positive when examined by a tributyrin plate assay. The lack of specificity in the tributyrin plate assay emphasizes the need to interpret the results of tributyrin lipolysis kinetically for assessing lipase activity in S. aureus.  相似文献   

6.
Lipoprotein lipase was expressed in Chinese hamster ovary (CHO) cells transfected with human lipoprotein lipase cDNA. The lipoprotein lipase retained tributyrin, water-soluble substrate, hydrolyzing activity (esterase activity). The catalytic action of this enzyme was studied by monitoring the esterase activity. The esterase activity was enhanced 4.5-fold by the addition of triolein emulsified with Triton X-100. This process was named interfacial activation. Treatment of LPL with trypsin (100 micrograms/ml, 37 degrees C for 10 min) caused the loss of the triolein hydrolyzing activity without that of the esterase activity. The esterase activity of trypsin-treated LPL was not enhanced by the addition of the triolein emulsion. The trypsin-treated LPL retained the ability to bind to very low density lipoproteins (VLDL). These results are consistent with the idea that LPL has a catalytic site and a lipid interface recognition site, and that the enzyme undergoes interfacial activation, in which the concealed catalytic site is revealed after the enzyme binds to the surface. Based on this hypothesis, the results obtained suggest that trypsin nicking may impair the interfacial activation process and cause the loss of the lipase activity.  相似文献   

7.
Candida antarctica lipase B (CALB) and Thermomyces lanuginosa lipase (TLL) were evaluated as catalysts in different reaction media using hydrolysis of tributyrin as model reaction. In o/w emulsions, the enzymes were used in the free form and for use in monophasic organic media, the lipases were adsorbed on porous polypropylene (Accurel EP-100). In monophasic organic media, the highest specific activity of both lipases was obtained in pure tributyrin at a water activity of >0.5 and at an enzyme loading of 10 mg/g support. With tributyrin emulsified in water, the specific activities were 2780 micromol min(-1) mg(-1) for TLL and 535 micromol min(-1) mg(-1) for CALB. Under optimal conditions in pure tributyrin, CALB expressed 49% of the activity in emulsion (264 micromol min(-1) mg(-1)) while TLL expressed only 9.2% (256 micromol min(-1) mg(-1)) of its activity in emulsion. This large decrease is probably due to the structure of TLL, which is a typical lipase with a large lid domain. Conversion between open and closed conformers of TLL involves large internal movements and catalysis probably requires more protein mobility in TLL than in CALB, which does not have a typical lid region. Furthermore, TLL lost more activity than CALB when the water activity was reduced below 0.5, which could be due to further reduction in protein mobility.  相似文献   

8.
A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.  相似文献   

9.
A novel strain of Rhizopus oryzae WPG secretes a noninduced lipase (ROLw) in the culture medium; purified ROLw is a protein of 29 kDa, the 45 N-terminal amino acid residues were sequenced, this sequence is very homologous to Rhizopus delemar lipase (RDL), Rhizopus niveus lipase (RNL) and R. oryzae lipase (ROL29) sequences; the cloning and sequencing of the part of the gene encoding the mature ROLw, shows two nucleotides differences with RDL, RNL and ROL29 sequences corresponding to the change of the residues 134 and 200; ROLw does not present the interfacial activation phenomenon when using tripropionin or vinyl propionate as substrates; the lipase activity is maximal at pH 8 and at 37 degrees C, specific activities of 3500 or 900 U mg(-1) were measured at 37 degrees C and at pH 8, using olive oil emulsion or tributyrin as substrates, respectively; ROLw is unable to hydrolyse triacylglycerols in the presence of high concentration of bile salts; it is a serine enzyme as it is inhibited by tetrahydrolipstatin and was stable between pH 5 and pH 8.  相似文献   

10.
Pig pancreatic carboxylester lipase (cholesterol esterase, E.C. 3.1.1.13) was inactivated at a tributyrin/water interface. The apparent rate constant for inactivation increased with increase in the particle surface area of the tributyrin emulsion. The large energy of activation and entropy change for inactivation (33.7 Kcal.mol-1 and 35.8 cal.mol-1.deg-1, using 5 mM sonicated tributyrin at 37 degrees C, respectively) suggest that the observed inactivation reflects denaturation of the enzyme at the tributyrin/water interface. Bile salts protected the enzyme from irreversible inactivation at the tributyrin/water interface. The protection by bile salts was related both to their concentration and to the tributyrin concentration (substrate surface area). The protection by bile salts was not related to their concentration below or above their critical micellar concentration; the binding of bile salts to enzyme was probably the dominant protection factor. Similar stabilization was observed with other detergents such as Brij-35, Triton X-100, and sodium dodecyl sulfate. These results suggest that inactivation of carboxylester lipase occurs at a high-energy lipid-water interface and that an important role of bile salts in vivo is to stabilize carboxylester lipase at interfaces.  相似文献   

11.
The carboxylesterase (carboxylic-ester hydrolase, EC 3.1.1.1) and monoacylglycerol lipase (glycerol-monoester acylhydrolase, EC 3.1.1.23) activities, measured against ethyl butyrate and emulsified monooleoylglycerol respectively, were determined for chicken liver microsomes and highly purified chicken liver carboxylesterase. The activity ratio (ethyl butyrate activity/monooleoylglycerol activity) was approx. 5 for microsomes and approx. 400 for carboxylesterase. Homogenization of microsomes in 0.1 M Tris-HCl buffer (pH 7.92) released all of the ethyl butyrate activity and about half of the monooleoylglycerol activity into a soluble form. Both activities eluted from a Sephadex G-200 column with the same elution volume as that of pure carboxylesterase. This fraction (fraction B) had an activity ratio of approx. 15, an average pI of 5.01 (cf. 4.75 for carboxylesterase), and ran on polyacrylamide gel electrophoresis at pH 8.6 as a number of closely spaced esterase bands with mobilities considerably less than those of the esterase bands present in the carboxylesterase. Fraction B activities against both substrates were completely inhibited by diethyl p-nitrophenyl phosphate and completely precipitated by antibody to carboxylesterase. The remaining half of the monoacylglycerol lipase activity of microsomes was solubilized by treatment with 1.5% (w/v) Triton X-100. This solubilized monoacylglycerol lipase was completely inhibited by diethyl p-nitrophenyl phosphate, showing it to be a serine-dependent enzyme like the carboxylesterases. However, it had no detectable activity against ethyl butyrate, indicating that it is not closely related to the carboxylesterases.  相似文献   

12.
类产碱假单胞菌耐热碱性脂肪酶基因的克隆   总被引:8,自引:0,他引:8       下载免费PDF全文
将类产碱假单胞菌(Pseudomonas pseudoalcaligene)总DNA经Sau3AI部分酶解后的35~50kbDNA片段与经BamHI线性化及CIAP处理过的粘粒pIJ285连接,以大肠杆菌LE392为受体,构建类产碱假单胞菌的基因文库。通过三丁酸甘油酯平板和橄榄油平板法检测克隆子,获得一株具有耐热碱性脂肪酶活性的菌株LE392(pHZ1401)。随后将pHZ1401上的外源DNA片段进行亚克隆,从而获得了具有脂肪酶活性的菌株HB101(pHZ1402)和HB101(pHZ1403),它们分别携带有2.9kb和3.0kb的外源片段。两外源片段约有2kb的重叠区。HB101(pHZ1403)所分泌的脂肪酶活性比HB101(pHZ1402)高4倍,是出发菌的5倍。  相似文献   

13.
The esterase profile of a lipase from Candida cylindracea   总被引:2,自引:0,他引:2  
A commercial preparation of a lipase produced by Candida cylindracea catalysed the hydrolysis of both long- and short-chain esters of p-nitrophenol. Six major bands of hydrolytic activity to alpha-naphthyl acetate were detected on polyacrylamide gel electrophoresis and two on isoelectric focusing. The esterase activity fractionated into two major peaks of activity on ion-exchange chromatography and into several peaks of activity on hydrophobic interaction chromatography. These esterase activities showed different substrate specificities to p-nitrophenyl esters, tributyrin and cetyl palmitate.  相似文献   

14.
The gene encoding the extracellular lipase of Staphylococcus xylosus (SXL) was cloned using PCR technique. The sequence corresponding to the mature lipase was subcloned in the pET-14b expression vector, with a strong T7 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. High level expression of the lipase by Escherichia coli BL21 (DE3) cells harbouring the lipase gene containing expression vector was observed upon induction with 0.4 mM IPTG at 37 degrees C. One-step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified His-tagged SXL was 1500 or 850 U/mg using tributyrin or olive oil emulsion as substrate, respectively. It has been proposed that the region near the residue Asp290 could be involved in the selection of the substrate. Therefore, we also mutated the residue Asp 290 by Ala using site-directed mutagenesis. The mutant SXL-D290A was overexpressed in E. coli BL21 (DE3) and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged SXL-D290A mutant was 1000 U/mg using either tributyrin or olive oil emulsion as substrate. A comparative study of the wild type (His(6)-SXL) and the mutant (His(6)-SXL-D290A) proteins was carried out. Our results confirmed that Asp290 is important for the chain length specificity and catalytic efficiency of the enzyme.  相似文献   

15.
16.
A mesophilic bacterial culture, producing an extracellular alkaline lipase, was isolated from the gas-washing wastewaters generated from the Sfax phosphate plant of the Tunisian Chemical Group and identified as Staphylococcus capitis strain. The lipase, named S. capitis lipase (SCL), has been purified to homogeneity from the culture medium. The purified enzyme molecular weight was around 45 kDa. Specific activities about 3,900 and 500 U/mg were measured using tributyrin and olive oil emulsion as substrates, respectively at 37°C and pH 8.5. Interestingly, the SCL maintained more than 60% of its initial activity over a wide pH values ranging from 5 to 11 with a high stability between pH 9 and 11 after 1 hr of incubation at room temperature. The lipase activity was enhanced in the presence of 2 mM of Mg2+, Ca2+, and K+. SCL showed significant stability in the presence of detergents and organic solvents. Altogether, these features make the SCL useful for industrial applications. Besides, SCL was compatible with commercially available detergents, and its incorporation increases lipid degradation performances making it a potential candidate in detergent formulation.  相似文献   

17.
In this study, we aimed to evaluate in vitro the inhibitory activity of a green tea extract (AR25 standardized at 25% catechins) on gastric and pancreatic lipase activities. We first used tributyrin as a substrate to evaluate the capability of AR25 to induce digestive lipase inhibition. Gastric lipase was totally inhibited by 40 mg AR25/g tributyrin whereas pancreatic lipase inhibition was maximum (78.8 +/- 0.7%) with 80 mg AR25/g tributyrin. We then used triolein, a long-chain triglyceride, to check whether AR25 could alter lipase activities on a physiologic substrate. AR25 60 mg/g triolein induced a dramatic inhibition of gastric lipase (96.8 +/- 0.4%) whereas pancreatic lipase activity was partially reduced (66.50 +/- 0.92%). Finally, the concerted action of gastric and pancreatic lipases was studied with an excess of enzymes to mimic the physiologic conditions observed in vivo. Incubation of AR25 with an excess of digestive lipases resulted in a drastic decrease in gastric lipolysis but the inhibitory effect on pancreatic lipase was less marked. On the whole, as compared to the control, lipolysis of triolein under the successive action of the two digestive lipases was reduced by 37 +/- 0.6% in the presence of AR25. Because a lipid/water interface is necessary for lipolysis to occur, lipid emulsification and emulsion droplet size were measured in gastric and duodenal media in the presence of AR25. In gastric and duodenal conditions, AR25 inhibited the lipid emulsification process. From these data we conclude that (1) in vitro, fat digestion is significantly inhibited by 60 mg AR25/g triolein, and (2) gastric as well as pancreatic lipase inhibition could be related to altered lipid emulsification in gastric or duodenal media. The green tea extract AR25 exhibiting marked inhibition of digestive lipases in vitro is likely to reduce fat digestion in humans.  相似文献   

18.
Lipoprotein lipase (LPL), a key enzyme which initiates the hydrolysis of triglycerides present in chylomicrons and very low density lipoproteins, consists of multiple functional domains which are necessary for normal activity. The catalytic domain of LPL mediates the esterase function of the enzyme but separate lipid binding sites have been proposed to be involved in the interaction of LPL with emulsified lipid substrates at the water-lipid interface. Like pancreatic lipase (PL), LPL contains a surface loop covering the catalytic pocket that may modulate access of the substrate to the active site of the enzyme. Secondary structural analysis of this loop reveals a helix-turn-helix motif with two short amphipathic helices that have hydrophobic moments of 0.64 and 0.68. In order to investigate the role of the loop in the initial interaction of LPL with its substrate, we utilized site-directed mutagenesis to generate eight constructs in which the amphipathic properties of the loop were altered and expressed them in human embryonal kidney-293 cells. Reducing the amphiphilicity without changing the predicted secondary structure of the loop abolished the ability of the lipase to hydrolyze emulsified, long chain fatty acid triglycerides (triolein) but not the water soluble substrate tributyrin. Replacing the loop of LPL with the loop of hepatic lipase, which differs in 15 of 22 amino acids but is also amphiphilic, led to the expression of an enzyme that retained both triolein and tributyrin hydrolyzing activity. Substitution of the LPL loop by a short four amino acid peptide, which may allow more direct access to the active site than the 22 amino acid loop, enhanced hydrolysis of short chain fatty acid triglycerides by more than 2-fold, while the ability to hydrolyze emulsified substrates was abolished. Thus, disruption of the amphipathic structure of the LPL loop selectively decreases the hydrolysis of emulsified lipid substrate without affecting the esterase or catalytic function of the enzyme. These studies establish that the loop with its two amphipathic helices is essential for hydrolysis of long chain fatty acid substrate by LPL providing new insight into the role of the LPL loop in lipid-substrate interactions. We propose that the interaction between the lipoprotein substrates and the amphipathic helices within this loop may in part determine lipase substrate specificity.  相似文献   

19.
The Tween 80 assay to detect lipolytic activities in agar media was evaluated. A spectrophotometric assay for Tween 80 hydrolysis was established. The specific activities with Tween 80, as well as with some conventional lipase-type and esterase-type substrates, were measured using several lipases and esterases. The activity with Tween 80 was similar to that obtained with p-nitrophenyl butyrate; the enzyme activities with both substrates were between the esterase and lipase categories. © Rapid Science Ltd. 1998  相似文献   

20.
C. Dupuis  C. Corre    P. Boyaval 《Applied microbiology》1993,59(12):4004-4009
The lipase and esterase activities of eight strains of dairy Propionibacterium freudenreichii subsp. freudenreichii were studied. A lipase activity was detected on whole cells and in the culture supernatant. The highest activity was expressed at 45°C and pH 6.8. An esterase activity was also detected in the culture medium. The electrophoresis of the intracellular fractions of the cells revealed from three to six different esterase activities. Two esterases were common to all the strains. The substrate specificity was dependent on each esterase, but no activity was revealed, in our experimental conditions, on ester substrates with a chain length longer than that of butyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号