首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chromatographic method involving medium-pressure liquid chromatography on alumina impregnated with silver nitrate is described for the separation of a series of closely related C27 sterol precursors of cholesterol differing only in the number and location of olefinic double bonds. The features of the described system are compared with those of previously described thin-layer, gas-liquid, gravity column, and high-pressure liquid chromatographic methods.  相似文献   

2.
Fibronectin is a dimeric glycoprotein (Mr 440,000) involved in many adhesive processes. During blood coagulation it is bound and cross-linked to fibrin. Fibrin binding is achieved by structures (type I repeats) which are homologous to the "finger" domain of tissue plasminogen activator. Tissue plasminogen activator also binds to fibrin via the finger domain and additionally via the "kringle 2" domain. Fibrin binding of tissue plasminogen activator results in stimulation of its activity and plays a crucial role in fibrinolysis. Since fibronectin might interfere with this binding, we studied the effect of fibronectin on plasmin formation by tissue plasminogen activator. In the absence of fibrin, fibronectin had no effect on plasminogen activation. In the presence of stimulating fibrinogen fragment FCB-2, fibronectin increased the duration of the initial lag phase (= time period until maximally stimulated plasmin formation occurs) and decreased the rate of maximal plasmin formation which occurs after that lag phase mainly by increasing the Michaelis constant (Km). These effects of fibronectin were dose-dependent and were similar with single- and two-chain tissue plasminogen activator. They were also observed with plasmin-pretreated FCB-2. An apparent Ki of 43 micrograms/ml was calculated for the inhibitory effect of fibronectin when plasminogen activation by recombinant single-chain tissue plasminogen activator was studied in the presence of 91 micrograms/ml FCB-2. When a recombinant tissue plasminogen activator mutant lacking the finger domain was used in a system containing FCB-2, no effect of fibronectin was seen, indicating that the inhibitory effect of fibronectin might in fact be due to competition of fibronectin and tissue plasminogen activator for binding to fibrin(ogen) via the finger domain.  相似文献   

3.
Calcium limits the plasmic proteolysis of fibrinogen fragment D by binding to a specific site on the carboxy-terminal segment of the D gamma chain. Employing sodium dodecyl sulfate-polyacrylamide gel electrophoresis to visualize plasmic fragments, Sr2+, Ba2+, and Mn2+ were found to have an equivalent capacity to limit the degradation of fibrinogen fragment D (Mr 94,000). Mg2+, Fe2+, Co2+, and Zn2+ did not comparably limit the digestion of fragment D. Equilibrium dialysis demonstrated that Ba2+ competitively inhibited Ca2+ binding to fibrinogen, suggesting that the ions occupied the Ca2+ binding site of fibrinogen and thereby limited the plasmic digestion of fragment D. The results suggest that Ca2+, Sr2+, Ba2+, and Mn2+ limit plasmin digestion of fragment D by interacting with a Ca2+ binding site in the D domain of the fibrinogen molecule.  相似文献   

4.
A rapid, convenient, and highly sensitive fluorometric assay for plasmin (P), plasminogen (Pg), and streptokinase (SK) as the activator complex (SK·P) is described. These assays are based on the measurement of the fluorescence of β-naphthol (βN) released from α-N-methyl α-N-tosyl-l-lysine β-naphthol ester (MTLNE) by the P present or generated during the assay. The rate of βN release may be followed by direct recording or determined subsequently, following termination of the enzyme reaction at a fixed digestion time, by the addition of p-nitrophenyl-p′-guanidinobenzoate. The latter method may be readily automated. The Km and V values for the hydrolysis of MTLNE by P or SK·P are equivalent. The Pg activator activity of P was shown to be very small (less than 0.2% of that of SK·P).  相似文献   

5.
6.
W H Beers 《Cell》1975,6(3):379-386
Plasminogen, plasminogen activator, protease inhibitors, and a proteolytic activity are shown to be present in bovine follicular fluid. Much of the proteolytic activity appears to be due to plasmin. In addition, plasminogen activator activity can be demonstrated in follicle wall homogenates. Evidence that plasmin decreases the tensile strength of follicle wall preparations is also reported. The potential for the involvement of these substances in ovulation is discussed.  相似文献   

7.
8.
Human diploid fibroblasts were seeded onto or into plasma clots and different aspects of cell adhesion and migration were measured. The roles of plasminogen activators and plasmin were studied by either the removal of plasminogen from plasma prior to clotting or by the addition of 10 mM epsilon-aminocaproic acid, which brings about an inhibition of plasmin in this system. When cells were seeded onto the surface of plasma clots, rates of attachment, spreading, and migration were unaffected by plasminogen depletion or plasmin inhibition. In contrast, when cells were seeded into plasma clots, then, although the rates of cells spreading were unaffected, cell migration was abolished by plasminogen depletion or by plasmin inhibition. When cells were seeded onto the surface of plasma clots and the rate of migration into the clots was measured, there was an absolute requirement for plasmin activity; while fibroblasts migrated rapidly into the fibrin lattice of control clots, in the case of plasminogen-depleted clots, cells failed to penetrate the lattice. Focussing through a plasma clot revealed that fibroblasts do not migrate through the fibrin lattice but instead, localized areas of fibrinolysis are generated and cells migrate over the surface of the area of lysis.  相似文献   

9.
The rate of plasmin or Val442-plasmin catalyzed hydrolysis of fibrinogen decreases several times as affected by arginine in high concentrations. The enzyme is shown to be not inhibited by arginine. The observed effect is supposed to depend on saturation of the protein-proteins interaction sites located between 442 and 790 amino acid residues.  相似文献   

10.
11.
Binding of plasminogen to fibrin and cell surfaces is essential for fibrinolysis and pericellular proteolysis. We used surface plasmon resonance and enzyme kinetic analyses to study the effect of two mAbs (A10.2, CPL15) on plasminogen binding and activation at fibrin surfaces. A10.2 is directed against the lysine-binding site (LBS) of kringle 4, whereas CPL15 recognises a region in kringle 1 outside the LBS. In the presence of CPL15 and A10.2 mAbs, binding of plasminogen (K(d)=1.16+/-0.22 micromol/l) to fibrin was characterised by a mAb concentration-dependent bell-shaped isotherm. A progressive increase in the concentration of mAbs at the surface was also detected, and reached a plateau corresponding to the maximum of plasminogen bound. These data indicated that at low mAb concentration, bivalent plasminogen-mAb-plasminogen ternary complexes are formed, whereas at high mAb concentration, a progressive shift to monovalent plasminogen-mAb binary complexes is observed. Plasmin formation in the presence of mAbs followed a similar bell-shaped profile. Monovalent Fab fragments of mAb A10.2 showed no effect on the binding of plasminogen, confirming the notion that a bivalent mAb interaction is essential to increase plasminogen binding and activation at the surface of fibrin.  相似文献   

12.
13.
Trinitrobenzyl alkylation of poly(D-lysine) provides a novel powerful stimulator of tissue-type plasminogen activator. Its stimulatory effect on plasminogen activation is far greater than that of the original poly(D-lysine), and even surpasses that of fibrin. Its effect on plasmin-catalysed modification of both tissue-type plasminogen activator (t-PA) and native (Glu-1-) plasminogen are also investigated. Cleavage of one-chain t-PA to its two-chain form is monitored by measuring the increase in amidolytic activity which accompanies this transformation. Presupposing apparent first-order reaction kinetics, a theory is developed by which the rate constant, kcat/Km = 1.0 X 10(6) M-1 X s-1 of plasmin cleavage of one-chain t-PA can be calculated. Plasmin-catalysed transformation of 125I-labelled Glu-1- to Lys-77-plasminogen is quantified following separation by polyacrylamide gel electrophoresis at pH 3.2. A rate constant, kcat/Km = 4.4 X 10(3) M-1 X s-1 is obtained for the reaction between plasmin and Glu-1-plasminogen in the presence of 1 mM trans-4-(aminomethyl)cyclohexane-1-carboxylic acid. Both of the above plasmin-catalysed reactions are strongly enhanced by trinitrobenzoylated poly(D-lysine). The mechanism of action of this stimulator is elucidated by studying its binding to both activator and plasmin(ogen), and by direct comparison of the results with measurements of plasminogen activation kinetics in the presence of the stimulator. Binding studies are performed exploiting the observation that an insoluble yellow complex is formed between plasminogen and modified poly(D-lysine). Protein-polymer interactions are also studied with solubilised components in an aqueous two-phase partition system containing dextran and poly(ethylene glycol). The rate enhancement of plasminogen activation is found to be closely correlated to the association of plasminogen to the stimulator. It is proposed that the stimulator effects of this simple polymer on the enzymatic activities of both plasminogen activator and plasmin are brought about by association of the proteinase and its substrate to a common matrix. Similarities between the action of the artificial and the natural stimulator (fibrin) are stressed. These properties of trinitrobenzoylated poly(D-lysine) makes it useful as a model for the study of the regulatory mechanism of the fibrinolytic process at the molecular level.  相似文献   

14.
15.
Duck fibrinogen (Mr 320 000) treated with streptokinase-activated human plasminogen in the presence of calcium ions was hydrolysed to terminal core fragments D and E. They were isolated from the digest by: (1) ion-exchange chromatography on DEAE-cellulose, (2) gel filtration on Sephadex G-100, and (3) affinity chromatography with the use of fibrin monomers coupled to CNBr-activated Sepharose. When the native D fragment, D1 was additionally digested by plasmin in the presence of EDTA, more degraded forms D2 and D3 appeared. Molecular weight of D1, D2, D3 and E estimated on SDS-polyacrylamide gel electrophoresis is 100 000, 89 000, 80 000 and 50 000, respectively. It was found that after reduction with 2-mercaptoethanol the fragments D1 and D3 consisted each of three polypeptide chains: alpha, beta, gamma: the gamma-chain of D3 remnant was more degraded (Mr 24 000) as compared with the gamma-chain of D1 remnant (Mr 42 000). Polymerization of both duck and pig fibrin monomers was inhibited by fragments D1 but not by D3.  相似文献   

16.
Binding of streptokinase (SK) to plasminogen (Pg) conformationally activates the zymogen and converts both Pg and plasmin (Pm) into specific Pg activators. The interaction of SK with Pm and its relationship to the mechanism of Pg activation were evaluated in equilibrium binding studies with active site-labeled fluorescent Pm derivatives and in kinetic studies of SK-induced changes in the catalytic specificity of Pm. SK bound to fluorescein-labeled and native Pm with dissociation constants of 11 +/- 2 pm and 12 +/- 4 pm, which represented a 1,000-10,000-fold higher affinity than determined for Pg. Stoichiometric binding of SK to native Pm was followed by generation of a two-fragment form of SK cleaved at Lys(59) (SK'), which exhibited an indistinguishable affinity for labeled Pm, while a truncated, SK(55-414) species had a 120-360-fold reduced affinity. Binding of SK to native Pm was accompanied by a >50-fold enhancement in specificity for activation of Pg, which was paralleled by a surprising 2.6-10-fold loss of specificity of Pm for 8 of 11 tripeptide-pNA substrates. Further studies with Pm labeled at the active site with 2-anilinonaphthalene-6-sulfonic acid demonstrated directly that binding of SK to Pm resulted in expression of a new substrate binding exosite for Pg on the SK.Pm complex. It is concluded that SK activates Pg in part by preferential binding to the active zymogen conformation. High affinity binding of SK to Pm enhances Pg substrate specificity principally through emergence of a substrate recognition exosite.  相似文献   

17.
Urokinase-activated human plasma was studied by gel electrophoresis, gel filtration, crossed immunoelectrophoresis and electroimmunoassay with specific antibodies and by assay of esterase and protease activity of isolated fractions. Urokinase induced the formation of different components with plasminogen+plasmin antigenicity. At low concentrations of urokinase, a component with a K(D) value of 0.18 by gel filtration and post beta(1) mobility by gel electrophoresis was detected. The isolated component had no enzyme or plasminogen activity. In this plasma sample fibrinogen was not degraded for 10h, but when fibrin was formed, by addition of thrombin, fibrin was quickly lysed, and simultaneously a component with a K(D) value of 0 and alpha(2) mobility appeared, which was probably plasmin in a complex with alpha(2) macroglobulin. This complex showed both esterase and protease activity. After gel filtration with lysine buffer of the clotted and lysed plasma another two components were observed with about the same K(D) value by gel filtration as plasminogen (0.35), but beta(1) and gamma mobilities by gel electrophoresis. They appeared to be modified plasminogen molecules, and possibly plasmin with gamma mobility. Similar processes occurred without fibrin at higher urokinase concentrations. Here a relatively slow degradation of fibrinogen was correlated to the appearance of the plasmin-alpha(2) macroglobulin complex. The fibrin surface appeared to catalyse the ultimate production of active plasmin with a subsequent preferential degradation of fibrin and the formation of a plasmin-alpha(2) macroglobulin complex. The gel filtration and electrophoresis of the plasma protease inhibitors, alpha(1) antitrypsin, inter-alpha-inhibitor, antithrombin III, and C(1)-esterase inhibitor indicated that any complex between plasmin and these inhibitors was completely dissociated. The beta(1) and post beta(1) components appear to lack correlates among components occurring in purified preparations of plasminogen and plasmin.  相似文献   

18.
19.
Photoaffinity labeling of human plasmin using 4-azidobenzoylglycyl-L-lysine inhibits clot lysis activity, while the activity toward the active-site titrant, p-nitrophenyl-p'-guanidinobenzoate, or alpha-casein are maintained. Photoaffinity labeling of native Glu-plasminogen with the same reagent causes incorporation of approximately 1.5 mol label per mol plasminogen. This labeled plasminogen can be activated to plasmin by either urokinase or streptokinase. The resulting plasmin has full clot lysis activity and can be subsequently photoaffinity labeled with a loss of clot lysis activity. The rate of activation of labeled plasminogen by urokinase is increased relative to that of native plasminogen. epsilon-Aminocaproic acid blocks incorporation of photoaffinity label into both plasminogen and plasmin, indicating that the labeling is specific to the lysine-binding sites. The labels are located in the kringle 1+2+3 fragment in either photoaffinity-labeled plasminogen or plasmin. These results indicate that the specific lysine-binding site blocked in plasmin acts in concert with the active-site in binding and using fibrin as a substrate. This clot lysis regulating site is not available for labeling in plasminogen, but is exposed or changed upon activation to plasmin. The different lysine-binding sites labeled in plasminogen may regulate the conformation of the molecule as evidence by an enhanced rate of activation to plasmin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号