首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C-terminus region of the 1863 residue early onset of breast cancer gene 1 (BRCA1) nuclear protein contains a tandem globular carboxy terminus domain termed BRCT. The BRCT repeats in BRCA1 are phosphoserine- and/or phosphothreonine-specific binding modules. The interaction of the BRCT(BRCA1) domains with phosphorylated BRCA1-associated carboxyl terminal helicase (BACH1) is cell cycle regulated and is essential for DNA damage-induced checkpoint control during the transition from the G(2) phase to the M phase of the cell cycle. Development of a competitive, homogeneous, high-throughput fluorescence polarization (FP) assay to identify small molecule inhibitors of BRCT(BRCA1)-BACH1 interaction is reported here. The FP assay was used for measuring binding affinities and inhibition constants of BACH1 peptides and small molecule inhibitors of BRCT(BRCA1) domains, respectively. A fluorescently labeled wild-type BACH1 decapeptide (BDP1) containing the critical phosphoserine, a phenylalanine at (P+3), and a GST-BRCT fusion protein were used to establish the FP assay. BDP1 has a dissociation constant (K(d)) of 1.58+/-0.01microM and a dynamic range (DeltamP) of 164.9+/-1.9. The assay tolerates 20% dimethyl sulfoxide, which enables screening poorly soluble compounds. Under optimized conditions, a Z' factor of 0.87 was achieved in a 384-well format for high-throughput screening.  相似文献   

2.
The identification of two novel series of formyl peptide receptor 1 (FPR1) antagonists are reported, represented by methionine benzimidazole 6 and diamide 7. Both series specifically inhibited the binding of labelled fMLF to hrFPR1 and selectively antagonized FPR1 function in human neutrophils, making them useful in vitro validation tools for the target.  相似文献   

3.
Ma X  Wang X  Gao X  Wang L  Lu Y  Gao P  Deng W  Yu P  Ma J  Guo J  Cheng H  Zhang C  Shi T  Ma D 《Life sciences》2007,81(14):1141-1151
The development of functional profiling technologies provides opportunity for high-throughput functional genomics studies. We describe a cell-based screening system to identify novel human genes associated with cell proliferation. The method integrates luciferase reporter gene activity, fluorescence stain, automated microscopy and cellular phenotype assays. We successfully used the system to screen 409 novel human genes cloned by our lab and found that 27 genes significantly up-regulated promoter-Renilla luciferase reporter plasmid (pRL) activity. Among them, five genes, TRAF3IP3, ZNF306, ZNF250, SGOL1, and ZNF434, were determined through morphological observation, calcein AM fluorescence stain, MTT assay and cell cycle analysis to be associated with cell proliferation. Furthermore, we showed that the gene TRAF3IP3, which initially was identified to specifically interact with TRAF3, stimulated cell growth by modulating the c-Jun N-terminal kinase (JNK) pathway, and RNAi of TRAF3IP3 confirmed that the effect was physiological and necessary. In summary, we integrated a rapid and efficient system for screening novel growth regulatory genes. Using the new screening system we identified five genes associated with cell proliferation for the first time.  相似文献   

4.
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and guanosine monophosphate (cGMP) into inactive 5' monophosphates, and exist as 11 families. Inhibitors of PDEs allow the elevation of cAMP and cGMP, which leads to a variety of cellular effects including airway smooth muscle relaxation and inhibition of cellular inflammation or of immune responses. PDE4 inhibitors specifically prevent the hydrolysis of cAMP. We have validated the manually developed reporter gene assay in a high-throughput screening format that allows for fast and cost-effective identification of potential inhibitors of PDE4 isozymes. The assay is sensitive and robust, with a Z' value of >0.5. The assay is also amenable to 384-well format.  相似文献   

5.
CD36, a class B scavenger receptor, is an integral membrane protein that mediates the endocytosis of modified lipoproteins. The functions of CD36 are complex and have been associated with atherosclerosis. In the current study, we developed a high-throughput screening (HTS) assay to identify small molecule antagonists by expressing human CD36 using a Bac-to-Bac baculovirus expression system in Spodoptera frugiperda (Sf9) cells. Uptake of 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate-labeled acetylated low-density lipoprotein (DiI-AcLDL) revealed that the IC50 values for the CD36 ligands oxidatively modified LDL (Ox-LDL), Ac-LDL, and high-density lipoprotein (HDL) were 0.039, 0.019, and 0.010 μg/ml, respectively. Using the HTS assay, two novel compounds, 2016481B and 2038751B, were found to inhibit DiI-AcLDL uptake in insect cells and exhibited IC50 values of 17.4 and 23.7 μM, respectively. These two novel compounds also inhibited DiI-AcLDL uptake in cultured Chinese hamster ovary (CHO) cells permanently expressing human CD36. Furthermore, these two compounds inhibited lipid accumulation in RAW 264.7 murine macrophage cells in foam cell assays. This HTS assay represents a potential method for identifying more effective macrophage scavenger receptor antagonists, which may serve as starting points for the development of novel anti-atherosclerotic agents.  相似文献   

6.
Peptide:N-glycanase (NGLY1) is an enzyme responsible for cleaving oligosaccharide moieties from misfolded glycoproteins to enable their proper degradation. Deletion and truncation mutations in this gene are responsible for an inherited disorder of the endoplasmic reticulum-associated degradation pathway. However, the literature is unclear whether the disorder is a result of mutations leading to loss-of-function, loss of substrate specificity, loss of protein stability or a combination of these factors. In this communication, without burdening ourselves with the mechanistic underpinning of disease causation because of mutations on the NGLY1 protein, we demonstrate the successful application of virtual ligand screening (VLS) combined with experimental high-throughput validation to the discovery of novel small-molecules that show binding to the transglutaminase domain of NGLY1. Attempts at recombinant expression and purification of six different constructs led to successful expression of five, with three constructs purified to homogeneity. Most mutant variants failed to purify possibly because of misfolding and the resultant exposure of surface hydrophobicity that led to protein aggregation. For the purified constructs, our threading/structure-based VLS algorithm, FINDSITEcomb, was employed to predict ligands that may bind to the protein. Then, the predictions were assessed by high-throughput differential scanning fluorimetry. This led to the identification of nine different ligands that bind to the protein of interest and provide clues to the nature of pharmacophore that facilitates binding. This is the first study that has identified novel ligands that bind to the NGLY1 protein as a possible starting point in the discovery of ligands with potential therapeutic applications in the treatment of the disorder caused by NGLY1 mutants.  相似文献   

7.
A novel series of small molecule C5a antagonists is reported. In particular, in vitro metabolic studies and solution based combinatorial synthesis are demonstrated as useful tools for the rapid identification of antagonists with low in vitro clearance. Members of this series specifically inhibited the binding of 125I-labeled C5a to human recombinant C5a receptor (C5aR). In functional cell assays these compounds displayed surmountable antagonism against C5a and did not demonstrate any detectable agonist activity.  相似文献   

8.
9.
C5a is a terminal product of the complement cascade that activates and attracts inflammatory cells including granulocytes, mast cells and macrophages via a specific GPCR, the C5a receptor (C5aR). Inhibition of C5a/C5aR interaction has been shown to be efficacious in several animal models of autoimmune diseases, including RA, SLE and asthma. This account reports the discovery of a new class of C5aR antagonists through high-throughput screening. The lead compounds in this series are selective and block C5a binding, C5a-promoted calcium flux in human neutrophils with nanomolar potency.  相似文献   

10.
目的:建立基于细胞水平的inositol-requiring 1/X-box-binding protein 1 (IRE1/XBP1)信号通路高通量筛选模型,用于发现新型IRE1/XBP1信号通路抑制剂。方法:构建pCAX-F-XBP1△DBD-luciferase质粒,并与pcDNA3.1质粒共转人胚肾细胞HEK293,G418抗性筛选获得多个稳定表达荧光素酶的单克隆。结果:首先利用内质网应激诱导剂衣霉素(tunicamycin,TM)考察单克隆对内质网应激反应的敏感性,确定6#单克隆用于后续研究;其次对细胞接种量、溶剂DMSO终浓度和TM的作用浓度与孵育时间等条件进行优化,最终确定高通量筛选模型条件, Z'因子达到0.62;最后对包含多个激酶抑制剂在内的449个化合物进行筛选,发现27个潜在的IRE1/XBP1抑制剂,其中MG132、Sunitinib和Staurosporine的IC50分别为6.61(±1.51)μmol/L、6.25(±0.36)μmol/L和48(±8)nmol/L。结论:成功建立有效靶向IRE1/XBP1信号通路的高通量药物筛选模型,为基于IRE1/XBP1信号通路为靶点的药物发现奠定坚实基础。  相似文献   

11.
The neuropeptide galanin modulates several physiological functions such as cognition, learning, feeding behavior, and depression, probably via the galanin 1 receptor (GAL-R1). Using an HTS assay based on 125I-human galanin binding to the human galanin-1 receptor (hGAL-R1), we discovered a series of 1,4-dithiin and dithiipine-1,1,4,4-tetroxides that exhibited binding affinity IC50's to hGAL-R1 ranging from 190 to 2700 nM. Two of the dithiepin analogues, 7 and 23, behaved pharmacologically as hGAL-R1 antagonists in secondary assays involving adenylate cyclase activity and GTP binding to G-proteins. Analogues 7 and 23 were also active in functional assays involving galanin, reversing the inhibitory effect of galanin on acetylcholine (ACh) release in rat brain hippocampal slices and electrically-stimulated guinea pig ileum twitch.  相似文献   

12.
Luthin DR 《Life sciences》2007,81(6):423-440
Over the past ten years, tremendous advances in our understanding of the role of the hypothalamic neurohormone, melanin-concentrating hormone (MCH), and its involvement in the regulation of food intake and body weight have been achieved. The MCHR1 receptor has been actively targeted as a much-needed, novel treatment for obesity, a disease of epidemic proportion in the United States. Numerous companies have joined the competition to be the first to produce a small molecule antagonist targeting MCHR1 receptors in the race for therapeutics for this disease. This review details the rising need for new treatments for obesity; the rationale and target validation of MCHR1 receptor antagonists as potential treatments for this disease; and the current status of the numerous small molecule MCHR1 antagonists in development by different companies. MCHR1 antagonists might find an additional usage in the treatment of anxiety and depression disorders. The rationale and current status of this effort by several companies is also reviewed.  相似文献   

13.
A series of low molecular weight antagonists of both the human and murine CC chemokine receptor 2, containing a 1-alkyl-3-(3-methyl-4-spiroindenylpiperidine)-substituted cyclopentanecarboxamide, is described. A SAR study of the C(1) substituent revealed that short, branched alkyl groups such as isopropyl, isobutyl, or cyclopropyl are optimal for both human and murine CCR2 binding activity.  相似文献   

14.
15.
High-throughput screening resulted in the identification of a series of novel motilin receptor agonists with relatively low molecular weights. The series originated from an array of biphenyl derivatives designed to target 7-transmembrane (7-TM) receptors. Further investigation of the structure-activity relationship within the series resulted in the identification of compound (22) as a potent and selective agonist at the motilin receptor.  相似文献   

16.
The phosphatidylinositol turnover assay is used widely to measure activation, and inhibition, of G(q)-linked G-protein-coupled receptors. Cells expressing the receptor of interest are labeled by feeding with tritiated myo-inositol. The label is incorporated into cellular phosphatidylinositol 4,5-bisphosphate, which, upon agonist binding to the receptor, is hydrolyzed by phospholipase C to inositol 1,4,5-trisphosphate (IP(3)) and diacylglycerol. In the presence of Li(+), dephosphorylation of IP(3) to inositol is blocked, and the mass of soluble inositol phosphates is a quantitative readout of receptor activation. Current protocols for this assay all involve an anion-exchange chromatography step to separate radiolabeled inositol phosphates from radiolabeled inositol, making the assay cumbersome and difficult to automate. We now describe a scintillation proximity assay to measure soluble inositol phosphate mass in cell extracts, thus obviating the need for the standard chromatography step. The method uses positively charged yttrium silicate beads that bind inositol phosphates, but not inositol. We have used this assay to measure activation of recombinant and endogenous muscarinic acetylcholine receptors and activation of recombinant neuropeptide FF2 receptor coupled to IP(3) production by coexpression of a chimeric G protein. Further, we demonstrate the use and functional validity of this assay in a semiautomated, 384-well format, by characterizing the muscarinic receptor antagonists pirenzepine and atropine.  相似文献   

17.
Neurotensin (NT) is a tridecapeptide hormone in the periphery and neurotransmitter in the brain that principally activates three receptor subtypes, named NTS1, NTS2, and NTS3. Since little is known about its structure in the presence of its principal receptor NTS1, we determined it using the key domain of the receptor, i.e. the third extracellular loop. We conclude the following: (i) for the receptor fragment, NT binding modifies its central part, underlying the great flexibility and adaptability of this region; (ii) for bound NT, the extended conformation of its C-terminus is confirmed for the first time in experimental conditions and in the presence of a part of the receptor; and (iii) despite some substitutions, the human receptor residues that are involved in the interaction with NT could be similar to those of the rat receptor which play an important role in NT binding.  相似文献   

18.
Yu Ye 《Analytical biochemistry》2010,401(1):168-1345
We have developed the first economical and rapid nonradioactive assay method that is suitable for high-throughput screening of the important pharmacological target human DNA (cytosine-5)-methyltransferase 1 (DNMT1). The method combines three key innovations: the use of a truncated form of the enzyme that is highly active on a 26-bp hemimethylated DNA duplex substrate, the introduction of the methylation site into the recognition sequence of a restriction endonuclease, and the use of a fluorogenic read-out method. The extent of DNMT1 methylation is reflected in the protection of the DNA substrate from endonuclease cleavage that would otherwise result in a large fluorescence increase. The assay has been validated in a high-throughput format, and trivial changes in the substrate sequence and endonuclease allow adaptation of the method to any bacterial or human DNA methyltransferase.  相似文献   

19.
High-throughput screening identified a low molecular weight antagonist of CXCR3 displaying micromolar activity in a membrane filtration-binding assay. Systematic modification of the benzimidazole core and tethered acetophenone moiety established tractable SAR of analogs with improved physicochemical properties and sub-micromolar activity across both human and murine receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号