首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Treatment of Saccharomyces cerevisiae with the morpholine fungicide fenpropimorph was examined using both a wild-type and a mutant strain ( erg2 ) defective in sterol Δ 8 → 7-isomerase. No resistance to fenpropimorph was observed in the mutant strain after 3 days, although after 7 days the mutant and the wild-type strains had grown in concentrations of fenpropimorph close to the saturating dose. Re-inoculation of both strains into fresh medium containing fenpropimorph resulted in continued growth and this adaptation to fungicide tolerance was lost on subculture in the absence of fenpropimorph. Analysis of the sterols present in the cells indicated that fenpropimorph treatment resulted in the accumulation of Δ 8,14-sterols. This accumulation and the corresponding depletion of ergosterol were correlated with growth inhibition rather than the presence of Δ 8-sterols. Together with an absence of gene dosage effect for ERG2 on fenpropimorph sensitivity, this supports the hypothesis that sterol Δ 8 → 7-isomerase inhibition does not contribute to the fungicidal activity of fenpropimorph.  相似文献   

2.
3.
4.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

5.
Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots   总被引:4,自引:0,他引:4  
We investigated the relation between the toxic effect of aluminum (Al) on root growth and the lignin deposition in wheat ( Triticum aestivum L. cvs Atlas 66 and Scout 66). In the Al-tolerant cultivar Atlas 66, control treatment without AlCl3 at pH 4.75, cell length increased dramatically in the portion of the root that was 0.6 to 3.2 mm from the root cap junction (approximately 1.0 to 3.6 mm from the root tip). However, treatment with 20 μ M AlCl3 for 24 and 48 h completely inhibited root elongation and markedly decreased the length and increased the diameter of the cells in the same portion of the root. Moreover, marked deposition of lignin was observed in the cells that corresponded to the portion 1.5 to 4.5 mm from the root tip in Atlas 66 roots treated with 20 μ M AlCl3, while no deposition of lignin was detected in control roots. Treatment with 5 μ M AlCl3 slightly inhibited root growth and there was no deposition of lignin in the root. On the other hand, in roots of the Al-sensitive cultivar Scout 66, treatment with 5 μ M AlCl3 completely inhibited root growth and markedly induced deposition of lignin. These results suggest that lignification in the elongating region coincided with the extent of inhibition of root growth by Al in two wheat cultivars that differed in their sensitivity to Al.  相似文献   

6.
The role of organic acids in aluminum (Al) tolerance has been the object of intensive research. In the present work, we evaluated the roles of organic acid exudation and concentrations at the root tip on Al tolerance of soybean. Exposing soybean seedlings to Al3+ activities up to 4.7 μ M in solution led to different degrees of restriction of primary root elongation. Al tolerance among genotypes was associated with citrate accumulation and excretion into the external media. Citrate and malate efflux increased in all genotypes during the first 6 h of Al exposure, but only citrate efflux in Al-tolerant genotypes was sustained for an extended period. Tolerance to Al was correlated with the concentration of citrate in root tips of 8 genotypes with a range of Al sensitivities (r2=0.75). The fluorescent stain lumogallion indicated that more Al accumulated in root tips of the Al-sensitive genotype Young than the Al-tolerant genotype PI 416937, suggesting that the sustained release of citrate from roots of the tolerant genotype was involved in Al exclusion. The initial stimulation of citrate and malate excretion and accumulation in the tip of all genotypes suggested the involvement of additional tolerance mechanisms. The experiments included an examination of Al effects on lateral root elongation. Extension of lateral roots was more sensitive to Al than that of tap roots, and lateral root tips accumulated more Al and had lower levels of citrate.  相似文献   

7.
The heat shock response of Escherichia coli is regulated by the cellular level and the activity of σ32, an alternative sigma factor for heat shock promoters. FtsH, a membrane-bound AAA-type metalloprotease, degrades σ32 and has a central role in the control of the σ32 level. The ftsH null mutant was isolated, and establishment of the Δ ftsH mutant allowed us to investigate control mechanisms of the stability and the activity of σ32 separately in vivo . Loss of the FtsH function caused marked stabilization and consequent accumulation of σ32 (≈20-fold of the wild type), leading to the impaired downregulation of the level of σ32. Surprisingly, however, Δ ftsH cells express heat shock proteins only two- to threefold higher than wild-type cells, and they also show almost normal heat shock response upon temperature upshift. These results indicate the presence of a control mechanism that downregulates the activity of σ32 when it is accumulated. Overproduction of DnaK/J reduces the activity of σ32 in Δ ftsH cells without any detectable changes in the level of σ32, indicating that the DnaK chaperone system is responsible for the activity control of σ32 in vivo . In addition, CbpA, an analogue of DnaJ, was demonstrated to have overlapping functions with DnaJ in both the activity and the stability control of σ32.  相似文献   

8.
Background  Pathogenic HIV and SIV infections characteristically deplete central memory CD4+ T cells and induce chronic immune activation, but it is controversial whether this also occurs after vaccination with attenuated SIVs and whether depletion or activation of CD4+ T-cell play roles in protection against wild-type virus challenge.
Methods  Rhesus macaques were vaccinated with SIVmac239Δnef and quantitative and phenotypic polychromatic flow cytometry analyses were performed on mononuclear cells from blood, lymph nodes and rectal biopsies.
Results  Animals vaccinated with SIVmac239Δnef demonstrated no loss of CD4+ T cells in any tissue, and in fact CCR5+ and CD28+CD95+ central memory CD4+ T cells were significantly increased. In contrast, CD4+ T-cell numbers and CCR5 expression significantly declined in unvaccinated controls challenged with SIVmac239. Also, intracellular Ki67 increased acutely as much as 3-fold over baseline in all tissues after SIVmac239Δnef vaccination then declined following primary infection.
Conclusion  We demonstrated in this study that SIVmac239Δnef vaccination did not deplete CD4+ T cells but transiently activated and expanded the memory cell population. However, increases in numbers and activation of memory CD4+ T cells did not appear to influence protective immunity.  相似文献   

9.
Aluminum (Al) stress was examined in three lines of wheat ( Triticum aestivum L.) by measuring root lengths, protein synthesis and protein accumulation in seedling root tips grown in a hydroponic system. An Al-sensitive, recurrent wheat parent (cv. Katepwa) showed very little root growth in low Al concentrations. In contrast, an Al-tolerant near isogenic line (Alikat) and Al-tolerant donor (cv. Maringa) had much greater root growth. Segregation data from an F2 population (Katepwa × Alikat) showed that one major gene controlled Al tolerance based on root growth ( X 2= 0.651). All three lines showed an approximately 2-fold increase in [35S]-Met incorporation in root tips after 3 days in Al and a comparable increase in root-tip dry weight. Maringa and Alikat root tips showed an increased total protein content while Katepwa root tips showed no increase in total protein content during the Al stress. Based on higher specific activities, insoluble proteins were preferentially translated in all three lines during Al stress. Proteinase activity in Katepwa root tips was 1.7-fold higher during Al stress, with Maringa and Alikat showing no change in proteinase activity. The Al-induced, increased proteinase activity in Katepwa appeared to inhibit soluble protein accumulation.  相似文献   

10.
Female tadpoles of Rana catesbeiana were laparotomized at metamorphic stages XI-XIII and an empty capsule or one containing cyanoketone (CK), which is an inhibitor of Δ5-3β-hydroxysteroid dehydrogenase (Δ5-3β-HSD), was implanted intraperitoneally. Ovarian activity of Δ5-3β-HSD was examined histochemically 2 months later, estradiol-17β (E2) secretion by the ovaries was measured by RIA 4 months later and histological changes of the ovaries were examined 6 months later. The Δ5-3β-HSD activity of the CK-treated ovaries was much lower than that of controls. E2 secretion per froglet by CK-treated ovaries was about one third that of controls (p<0.001). Histological examination showed various degrees of masculinization of the ovaries, about 28% of which were totally transformed into testis-like structures.
As a result of suppressed Δ5-3β-HSD activity, dehydroepiandrosterone would have accumulated, resulting in deficient E2 secretion and, therefore, ovarian masculinization. In tadpoles, this effect does not depend on the pituitary, whereas interrenal hyperplasia and hyperactivity do, indicating that interrenal function is not essential for ovarian masculinization. From these findings and our previous results, we suggest that disturbance of steroidogenesis by CK in the ovaries results in their masculinization.  相似文献   

11.
A rapid hydroponic screening for aluminium tolerance in barley   总被引:9,自引:0,他引:9  
Selection and breeding of crops for aluminium (Al) tolerance is a useful approach to increase production on acid soils. This requires a rapid and reliable system to discriminate between Al-tolerant and Al-sensitive genotypes. A hydroponic system was developed to screen for Al tolerance in barley (t Hordeum vulgare L.) to overcome several problems encountered in previous screening methods. Four levels of Al (5, 10, 20, and 40 t M) in 1 mt M CaCl2 solution at pH 4.5 were used to rank lines for Al-tolerance. Each line was cultured in a different compartment to eliminate chemical and pH interactions among lines. To avoid changes in Al tolerance due to other factors such as the calcium (Ca) concentration of the solution, Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars of wheat (t Triticum aestivum L.) were used as reference cultivars. Five ranks of Al tolerance from highly tolerant to highly sensitive were established by comparison with each reference. Eriochrome cyanine R staining was used for the rapid evaluation of Al tolerance. This screening system allowed classification of about 50 barley lines into five different Al tolerance groups within one week. Using this system, screening of ca. 600 barley lines from various regions of the world was conducted. Most lines were sensitive to Al, but ninety lines showed intermediate Al-tolerance. Thirty nine lines were highly sensitive to Al in solution.  相似文献   

12.
Abstract The biosynthesis of the positional isomers of the monounsaturated fatty acids of Methylococcus capsulatus (Bath) has been investigated by studying the incorporation of [2-14C]malonyl CoA into long-chain fatty acids in vitro. The major unsaturated products were Δ 9 16:1 and Δ 11 18:1; however, Δ 8, Δ 10 and Δ 11 16:1, as well as, Δ 10, Δ 12 and Δ 13 18:1 were also synthesized. The exclusion of O2 from the reaction vessel did not affect the synthesis of unsaturated fatty acids or the double bonds positions. Cerulenin inhibited the synthesis of unsaturated fatty acid more than saturated fatty acid. The use of both [1-14C] octanoate and [1-14C] decanoate as substrate resulted in the synthesis of long-chain fatty acids, however, unsaturates were only synthesized from octanoate. These results imply that the unique positional isomers of M. capsulatus are not synthesized by an aerobic mechanism.  相似文献   

13.
Abstract: The acute and chronic effects of opioid exposure on [3H]norepinephrine ([3H]NE) release were examined in cell cultures of embryonic rat locus coeruleus (LC). Initial morphological and biochemical characterization of the cultures indicated that the cells exhibited properties similar to those observed in situ. Specific [3H]NE uptake was saturable with a K m value of 222 ± 52 n M . [3H]NE accumulated by LC cells was released in response to 20 m M K+ stimulation, in a calcium-dependent manner. Both components of neurotransmitter release, spontaneous and K+ evoked, were significantly inhibited by β-endorphin, with the latter being maintained in the presence of tetrodotoxin. The pharmacology of the opioid effect was consistent with that of μ-receptor activation. The effect of chronic exposure to the μ-selective agonist fentanyl (1 μ M ) was examined following 4 days of drug treatment. Although there was no significant effect of fentanyl on K+-evoked [3H]NE release, these cells were tolerant to the acute inhibitory effect of β-endorphin. These results indicate that this is an appropriate system for examining the effects of acute and chronic opioid treatment on noradrenergic cells in vitro. In addition, this system may be useful as a CNS model for examining mechanisms that underlie tolerance and dependence following chronic opioid exposure.  相似文献   

14.
Four maize cultivars, which differ in tolerance to acid soils under field conditions ( Zea mays L., acid soil-tolerant C 525 M, BR 201 F and Adour 250, and acid soil-sensitive HS 7777) were used to study the influence of pH (4.3 and 6.0) and Al (0, 20 and 50 μ M ) on the elongation of seminal roots in nutrient solution. Root elongation was inhibited by high H+ concentrations (pH 4.3) in cultivars C 525 M, Adour 250 and HS 7777 but not in BR 201 F. After 20 h exposure to Al, root elongation rates were more inhibited in cultivars BR 201 F and HS 7777 than in C 525 M and Adour 250. The use of a computerized linear displacement transducer system with high resolution (1 μm) allowed the monitoring of short-term responses of root elongation to Al. In the three cultivars affected by H+ toxicity, but not in the acid-tolerant BR 201 F, Al supply caused an immediate, but transient increase of relative root elongation rates. This result supports the hypothesis that Al-induced growth stimulation is caused by amelioration of proton toxicity. The time required for 20 μ M Al to induce a 5% decrease of root elongation rates was shorter in the Al-sensitive BR 201 F (33 min) and HS 7777 (86 min) than in the Al-tolerant C 525 M (112 min) and Adour 250 (146 min) cultivars. However, the response-time to Al may be overestimated in the proton-sensitive cultivars, due to the transient stimulation of root elongation rates induced by Al. According to our results, experiments intended to investigate primary mechanisms of Al toxicity should be started after less than 30 min exposure to toxic Al concentrations, using pH conditions which avoid Al-induced growth stimulation due to amelioration of proton toxicity.  相似文献   

15.
SYNOPSIS. A reduction in the growth temperature of Tetrahymena pyriformis strain WH-14 from 35 C to 15 C resulted in distinct alterations in the fatty acid composition of the glycerophospholipids. The proportion of normal saturated acids declined from 26 to 19%; palmitoleic acid increased by 6%, and the composition of the polyunsaturated fatty acids increased in 18:2 Δ6,11(n) and decreased in 18:2 Δ9,12(n) and 18:3 Δ6,9,12(n). The unsaturation index (the average number of double bonds/100 molecules) did not change with a shift in temperature.
Two biosynthetic pathways exist in Tetrahymena for the formation of unsaturated fatty acids. The observed changes in fatty acid composition that accompany a lowering of the environmental temperature can be accounted for by a reduction in the accumulation of products of the fatty acid pathway leading to the formation of γ-linolenic acid [16:0(n) → 18:0(n) → 18:1 Δ9(n) → 18:2 Δ9,12(n) → 18:3 Δ6,9,12(n)] and an increase in the components of the pathway leading to the formation of 18:2 Δ6,11(n) [16:0(n) → 16:1 Δ9(n) → 18:1 Δ11(n) → 18:2 Δ6,11(n)]. The data suggest that the regulatory mechanism in Tetrahymena differs from that found in some bacteria where a simple substitution of unsaturated fatty acids for saturated fatty acids occurs at low culture temperatures.  相似文献   

16.
The psychoactive ingredient of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC), can evoke apoptosis in cultured cortical neurones. Whilst the intracellular mechanisms responsible for this apoptotic pathway remain to be fully elucidated, we have recently identified a role for the CB1 type of cannabinoid (CB) receptor and the tumour suppressor protein, p53. In the current study, we demonstrate the Δ9-THC promotes a significant increase in lysosomal permeability in a dose- and time-dependent manner. The increase in lysosomal permeability was blocked by the CB1 receptor antagonist, AM251. Δ9-THC increased the localization of phospho-p53Ser15 at the lysosome and stimulated the release of the lysosomal cathepsin enzyme, cathepsin-D, into the cytosol. The p53 inhibitor, pifithrin-α and small interfering RNA-mediated knockdown of p53 prevented the Δ9-THC-mediated increase in lysosomal permeability. Furthermore, the Δ9-THC -mediated induction of apoptosis was abrogated by a cell-permeable cathepsin-D inhibitor (10 μM). Thus, the study demonstrates that Δ9-THC impacts on the lysosomal system, via p53, to evoke lysosomal instability as an early event in the apoptotic cascade. This provides evidence for a novel link between the CB1 receptor and the lysosomal branch of the apoptotic pathway which is crucial in regulating neuronal viability following exposure to Δ9-THC.  相似文献   

17.
This study investigated the impact of lipid extraction, CaCO3 removal and of both treatments combined on fish tissue δ13C, δ15N and C:N ratio. Furthermore, the suitability of empirical δ13C lipid normalization and correction models was examined. δ15N was affected by lipid extraction (increase of up to 1·65‰) and by the combination of both treatments, while acidification alone showed no effect. The observed shift in δ15N represents a significant bias in trophic level estimates, i.e. lipid-extracted samples are not suitable for δ15N analysis. C:N and δ13C were significantly affected by lipid extraction, proportional to initial tissue lipid content. For both variables, rates of change with lipid content (ΔC:N and Δδ13C) were species specific. All tested lipid normalization and correction models produced biased estimates of fish tissue δ13C, probably due to a non-representative database and incorrect assumptions and generalizations the models were based on. Improved models need a priori more extensive and detailed studies of the relationships between lipid content, C:N and δ13C, as well as of the underlying biochemical processes.  相似文献   

18.
To enrich differentially expressed sequence tags (ESTs) for aluminum (A1) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) nearisogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to A1 stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg^2 transportation, and other functions. Under A1 stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to A1 stress may involve complicated defense-related signaling and metabolic pathways. The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.  相似文献   

19.
Wag31 of Mycobacterium tuberculosis belongs to the DivIVA family of proteins known to regulate cell morphology in Gram-positive bacteria. Here we demonstrate an unrecognized, novel role of Wag31 in oxidatively stressed mycobacteria. We report the cleavage of penicillin-binding protein 3 (PBP3) by the intramembrane metalloprotease Rv2869c (MSMEG_2579) in oxidatively stressed cells. Amino acids 102A and 103A of PBP3 are required for Rv2869c-mediated cleavage. Wag31MTB, by virtue of its interaction with PBP3 through amino acid residues 46NSD48, protects it from oxidative stress-induced cleavage. PBP3 undergoes cleavage in Mycobacterium smegmatis (strain PM2) harbouring wag31 (Δ46NSD48) instead of the wild type, with concomitant reduction in ability to withstand oxidative stress. Overexpression of Wag31(Δ46NSD48) attenuates the survival of M. tuberculosis in macrophages with concomitant cleavage of PBP3, and renders the organism more susceptible towards hydrogen peroxide as well as drugs which generate reactive oxygen species, namely isoniazid and ofloxacin. We propose that targeting Wag31 could enhance the activity of mycobactericidal drugs which are known to generate reactive oxygen species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号