首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2T, exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state.  相似文献   

2.
The cell extracts (i.e., intracellular metabolites) and culture liquids (i.e., extracellular metabolites) of microorganisms isolated from various ecotopes were found to inhibit the catalase activity of Staphylococcus aureus ATCC 6538P, which resulted in a considerable inhibition of the growth of metabolite-treated S. aureus cells by hydrogen peroxide. The inhibitory effect of microbial metabolites on S. aureus catalase can be considered as a mechanism of intercellular interactions responsible for the formation of microbiocenoses.  相似文献   

3.
Bukharin  O. V.  Sgibnev  A. V.  Cherkasov  S. V.  Ivanov  Yu. B. 《Microbiology》2002,71(2):154-157
The cell extracts (i.e., intracellular metabolites) and culture liquids (i.e., extracellular metabolites) of microorganisms isolated from various ecotopes were found to inhibit the catalase activity of Staphylococcus aureus ATCC 6538 P, which resulted in a considerable inhibition of the growth of metabolite-treated S. aureus cells by hydrogen peroxide. The inhibitory effect of microbial metabolites on S. aureus catalase can be considered as a mechanism of intercellular interactions responsible for the formation of microbiocenoses.  相似文献   

4.
The total of 98 strains of moulds were isolated from soils collected in arctic tundra (Spitzbergen). Among these strains Penicillium cyclopium 1, the most effective for production of catalase, was selected by the method of test-tube microculture. The time course of growth and catalase production by this strain showed the intracellular activity of this enzyme to be about 3-fold higher than its extracellular level Some properties of crude catalase preparation, isolated from postculture liquids by lyophilization, were also examined. Catalase activity showed its maximum at 15 degrees C, indicating adaptation of the enzyme to lower temperatures of the arctic environment.  相似文献   

5.
An analysis of intracellular and extracellular leptospiral enzymes was made by use of starch-gel electrophoresis with natural and synthetic substrates. Of 37 serotypes examined for extracellular exterase, all had activity of varying mobility and degree. All extracellular preparations were negative for catalase, phosphatase, and naphthylamidase. Intracellularly, five serotypes were examined, including Leptospira biflexa Patoc I, L. biflexa Waz, L. canicola Moulton, L. icterohaemorrhagiae RGA, and L. pomona S91. Among the enzymes detected by this electrophoretic technique were transaminase and catalase, confirming the results of previous investigators. Further, other enzymes heretofore unreported have been detected. These include esterases, phosphatases, lactic, malic, glutamic, succinic, alpha-glycerophosphate, and 6-phosphogluconic dehydrogenases, and a naphthylamidase. The presence of these enzymes suggests the existence of tricarboxylic acid, glycolytic, and pentose-related pathways in Leptospira. In addition, enzyme patterns show promise in leptospiral classification.  相似文献   

6.
Shifting the temperature from 30 to 45 degrees C in an aerobic Escherichia coli culture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor. The expression was evaluated by measuring beta-galactosidase activity in E. coli strains that contained fusions of the antioxidant gene promoters with the lacZ operon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type and sodA sodB mutant cells to heat shock was almost the same. In the E. coli culture adapted to growth at 42 degrees C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30 degrees C. The temperature-adapted cells grown aerobically at 42 degrees C showed an increased ability to express the fused katG-lacZ genes.  相似文献   

7.
Intracellular and extracellular catalases of different species of Candida were investigated using different culture media. All the Candida strains produced intracellular catalase, whose enzymatic activity was detected by non-denaturating polyacrylamide gradient (4-30%) gel electrophoresis. The cell extracts presented a major 230 kDa catalase band and in some strains variants of catalase with different molecular weights were detected. Candida catalase activity was not affected by heating at 50 degrees C and incubation with beta-mercaptoethanol, but treatment with sodium dodecyl sulphate inhibited or reduced enzymatic activity. Extracellular enzyme activity was not detected in any of the culture filtrate extracts tested.  相似文献   

8.
Effect of heme on Bacteroides distasonis catalase and aerotolerance   总被引:4,自引:1,他引:3       下载免费PDF全文
Parallel increases in intracellular catalase activity and resistance to extracellular H2O2 and to hyperbaric O2 toxicity were observed when Bacteroides distasonis VPI 4243 (ATCC 8503, type strain) was grown in either complex or defined medium containing graded amounts of hemin. Virtually all of the cells with high catalase activity (greater than 200 U/mg) remained viable upon exposure at 37 degrees C to 100-lb/in2 O2 on agar surfaces for 1 h, whereas low-catalase cells (less than 10 U/mg) lost 1.2 log units of viable cells during that treatment. Upon exposure to 500 microM H2O2, high-catalase cells lost 0.4 log units of the initial viable colonies during the same period in which low-catalase cells lost 3 log units of viable cells. The superoxide dismutase activity was the same in each test culture. These data support the role of intracellular catalase in protecting B. distasonis from oxidative damage resulting from hyperbaric oxygenation or H2O2 exposure. Catalase activity elicited by adding hemin to cells grown previously in medium lacking hemin was inhibited only 40% by prior incubation of the cells with chloramphenicol (30 micrograms/ml) and only 22% with rifampin (5 micrograms/ml). A model which is consistent with these data involves the production of an apocatalase in cells grown in low-hemin medium. Addition of hemin to the cells would result in a rapid chloramphenicolor rifampin-insensitive stimulation of catalase activity followed by further de novo biosynthesis of catalase.  相似文献   

9.
Extracellular catalases produced by fungi of the genus Penicillium: P. piceum, P. varians and P. kapuscinskii were purified by consecutive filtration of culture liquids. The maximum reaction rate of H2O2 decomposition, the Michaelis constants and specific catalytic activities of isolated catalases were determined. The operational stability was characterized by effective rate of catalase inactivation during enzymatic reaction (kin at 30 degrees C). The thermal stability was determined by the rate of enzyme thermal inactivation at 45 degrees C (k*[symbol: see text]H, s-1). Catalase from P. piceum displayed the maximum activity, which was higher than the activity of catalase from bovine liver. The operational stability of catalase from P. piceum was twofold to threefold higher than the stability of catalase from bovine liver. The physicochemical characteristics of catalases of fungi are better than the characteristics of catalase from bovine liver and intracellular catalase of yeast C. boidinii.  相似文献   

10.
Resistance of Penicillium piceum F-648 to hydrogen peroxide under short-term and prolonged oxidative stress was studied. An increase in the activity of intracellular catalase in fungal cells after short-term exposure to hydrogen peroxide was shown. Activation of fungal cells induced by H2O2 depends on H2O2 concentration, time of exposure, and the growth phase of the fungus. Variants of P. piceum F-648 that produced two forms of extracellular catalase with different catalytic properties were obtained due to prolonged adaptation to H2O2. Catalase with low affinity for substrate was produced predominantly by the parent culture and variant 3; however, a high substrate affinity of catalase was observed in variant 5. Variant 5 of P. peniceum F-648 displayed a high catalytic activity and operational stability of catalase in the presence of phosphate ions and the concentration of substrate less than 30 mM at pH more than 7.  相似文献   

11.
Menadione (MD) and H2O2 caused distinct effects on glutathione status in growing Escherichia coli. Treatment of E. coli AB1157 with 1-25 mM H2O2 did not result in an appreciable decrease in intracellular total glutathione (reduced glutathione [GSH] + oxidized glutathione [GSSG]). Only when cells were treated with 25 mM H2O2 an increase in GSSG and a decrease in the GSH:GSSG ratio were observed. In cells deficient in catalase HPI, such effect was observed even at 10 mM H2O2. The exposure of E. coli AB1157 to MD caused a dose-dependent decrease in intracellular total glutathione, an increase in GSSG, and a decrease in the ratio of GSH:GSSG. In E. coli deficient in cytosolic superoxide dismutase activity, a decrease in total glutathione after incubation with 0.2 mM MD was not accompanied by an increase in GSSGin, and the ratio of GSHin:GSSGin was three times higher than in the wild-type cells. The changes in the redox status of extracellular glutathione under the action of both oxidants were similar. Although the catalase activity increased several times after exposure to both oxidants, there were little or no changes in the activity of enzymes related to glutathione metabolism. A possible role of changes in redox status of glutathione under oxidative stress is discussed.  相似文献   

12.
Telomere shortening and redox imbalance have been related to the aging process. We used cultured mouse embryonic fibroblasts (MEF) isolated from mice lacking telomerase activity (Terc(-/-)) to analyze the redox balance and the functional consequences promoted by telomerase deficiency. Comparison with wild-type (WT) MEF showed that Terc(-/-) MEF had greater oxidant damage, showing higher superoxide anion and hydrogen peroxide production and lower catalase activity. Restoration of telomerase activity in Terc(-/-) MEF increased catalase expression and activity. TGF-beta1 and collagen type IV levels were higher in Terc(-/-) than in WT MEF. TGF-beta1 promoter activity decreased when Terc(-/-) MEF were incubated with exogenous catalase, suggesting that catalase deficiency is the cause of the TGF-beta1 increase. Similar results were obtained in vivo. Homogenized renal cortex from 6-month-old Terc(-/-) showed higher oxidant capacity, lower catalase activity, greater oxidative damage, and higher TGF-beta1 and fibronectin levels than that from WT mice. In summary, telomerase deficiency reduces catalase activity, determining a redox imbalance that promotes overexpression of TGF-beta1 and extracellular matrix proteins.  相似文献   

13.
Rates of collagen and non-collagen protein synthesis in rabbit arterial smooth muscle cells (SMC) were determined by using the specific (radio)activity of [3H]proline in the extracellular, intracellular, and prolyl-tRNA pools. The intracellular free proline specific activity was only 25% of the extracellular value in cultures incubated for 12 h in 0.25 mM-proline. The specific activity of prolyl-tRNA was less than 10% of the extracellular specific activity. Increasing the extracellular proline concentration 10-fold (to 2.5 mM), while keeping the extracellular specific activity of proline constant, resulted in equilibration of the specific activities of intracellular and extracellular free proline, but the specific activity of prolyl-tRNA remained at less than 10% of the extracellular specific activity. Therefore, calculated rates of collagen and non-collagen protein synthesis were greatly underestimated using the intracellular or extracellular specific activity of proline. SMC were also incubated with 0.1 mM-[14C]ornithine in 0.25 nM or 2.5 mM non-labelled proline to examine synthesis de novo of proline and prolyl-tRNA from ornithine. In SMC cultures containing 0.25 mM unlabelled proline, the specific activity of intracellular ornithine was approx. 45% of the extracellular specific activity, due to the production of unlabelled ornithine. The specific activity of ornithine-derived intracellular free proline in SMC incubated with 2.5 mM-proline was significantly lower than in SMC incubated in 0.25 mM-proline, due to the influx of unlabelled proline. However, a corresponding difference in the specific activity of [14C]prolyl-tRNA between SMC in 0.25 mM- or 2.5 mM-proline was not observed. Ornithine-derived [14C]proline was incorporated into proteins in a manner different from that of exogenously added radiolabelled proline. A much higher proportion of the proline synthesized de novo was channelled into collagen synthesis relative to total protein synthesis. Together, these results show that intracellular proline pools are highly compartmentalized in arterial SMC. They also suggest that proline synthesized from ornithine may enter a prolyl-tRNA pool separate from that of proline entering from the extracellular medium.  相似文献   

14.
Smirnova  G. V.  Zakirova  O. N.  Oktyabr'skii  O. N. 《Microbiology》2001,70(5):512-518
Shifting the temperature from 30 to 45°C in an aerobic Escherichia coliculture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor.The expression was evaluated by measuring -galactosidase activity in E. colistrains that contained fusions of the antioxidant gene promoters with the lacZoperon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type andsodA sodBmutant cells to heat shock was almost the same. In the E. coliculture adapted to growth at 42°C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30°C. The temperature-adapted cells grown aerobically at 42°C showed an increased ability to express the fused katG–lacZgenes.  相似文献   

15.
In this study we examined the activity of catalase in the water column (mainly attributed to planktonic microorganisms) and the activity of catalase and superoxide dismutase (SOD), as well as lipid peroxidation in the midgut gland of the benthic bivalve Donax trunculus as possible indicators of biotic stress. The measurements were performed at stations situated at known contaminated and clean sites in the coastal waters and shores along the Israeli coast (eastern Mediterranean Sea). In the water column, we found that catalase activity was higher in polluted coastal waters than in nearby unpolluted or less-polluted stations. Moreover, there was diurnal periodicity in catalase activity rates which matched the diurnal changes in hydrogen peroxide levels in seawater. Consistent evidence of extracellular catalase activity was found in the seawater sampled. Catalase activity rates in the midgut gland of D. trunculus did not exhibit clear patterns with respect to site (polluted or clean) or season. However, SOD activity and lipid peroxidation measured in the same tissues were good indicators of organic pollution in the coastal waters examined and, among the three stations examined in Haifa Bay, Qiriat Haim was the most polluted.  相似文献   

16.
Extracellular catalases produced by fungi of the genusPenicillium, i.e.,P. piceum, P. varians, andP. kapuscinskii, were purified by consecutive filtration of culture liquids. The maximum reaction rate of H2O2 decomposition, the Michaelis constants, and specific catalytic activities of isolated catalases were determined. The operational stability was characterized by the effective rate of catalase inactivation during enzymatic reaction (k in at 30°C). The thermal stability was determined by the rate of enzyme thermal inactivation at 45°C (k in * , s-1). Catalase fromP. piceum displayed the maximum activity, which was higher than the activity of catalase from bovine liver. The operational stability of catalase fromP. piceum was twofold to threefold higher than the stability of catalase from bovine liver. The physicochemical characteristics of catalases of fungi are better than the characteristics of catalase from bovine liver and intracellular catalase of yeastC. boidinii.  相似文献   

17.
The intra- and extracellular levansucrase (LS) activities produced by Bacillus amyloliquefaciens were promoted by supplementing the sucrose medium with yeast and peptone as nitrogen sources. These activities were purified by polyethylene glycol (PEG) fractionation for the first time. PEGs of low molecular weight selectively fractionated the intracellular LS activity rather than the extracellular LS activity. Contrary to other LSs, B. amyloliquefaciens LSs exhibited high levan-forming activity over a wide range of sucrose concentrations. The optimum temperatures for the intra- (25-30 °C) and extracellular (40 °C) LS transfructosylation activities were lower than those for the hydrolytic activities (45-50 °C; 50 °C). In addition, the catalytic efficiency for the transfructosylation activity of intracellular LS was higher than that of extracellular LS. These differences between intra- and extracellular LSs reveal the occurrence of certain conformational changes to LS upon protein secretion and/or purification. This study is the first to highlight that B. amyloliquefaciens LSs synthesized a variety of FOSs from various saccharides, with lactose and maltose being the best fructosyl acceptors.  相似文献   

18.
研究了钝顶螺旋藻和极大螺旋藻在含CdCl2水体中的生长状况与摄Cd能力.结果表明:两种螺旋藻皆对CdCl2有较强的耐受能力,但是有不同的摄Cd行为.当CdCl2浓度为6~24mg.L-1,培养96h时,两种螺旋藻对Cd的摄取作用主要表现为藻细胞外的表面吸附;培养10d时,钝顶螺旋藻的胞内Cd含量依然甚微,而极大螺旋藻对Cd的细胞内吸附量却明显增加,24mg.L-1CdCl2处理的极大螺旋藻胞内的Cd吸附量为12mg.L-1CdCl2处理的11.6倍,且略超过细胞表面吸附量.表明在高浓度Cd的长时间胁迫下,两种螺旋藻的摄Cd行为和对Cd的耐受机制具有明显差异,其中钝顶螺旋藻为胞外机制,而极大螺旋藻却为胞内、胞外混合机制,且以胞内机制为主.  相似文献   

19.
Catalases are the most important enzymatic systems used to degrade hydrogen peroxide (H2O2) into water and oxygen, thereby lowering intracellular hydrogen peroxide levels. Entomopathogenic fungi display increased catalase activity during germination and growth, which is necessary to counteract the hyperoxidant state produced by oxidative metabolism. We studied the influence of five different hydrocarbons on catalase production by Lecanicillium muscarium to determine the importance of catalase induction in fungal germination, stress tolerance and virulence. Conidia produced by colonies grown on different hydrocarbons showed higher rates of catalase activity compared to the control and the catalase activity of conidia produced on n-octacosane was three times higher than the activity of the control. This increase in catalase activity was accompanied by a higher level of resistance to exogenous hydrogen peroxide and a reduction in the germination time. Our study has helped to identify that increased catalase activity improves the germination and tolerance to different antioxidant stress response of L. muscarium.  相似文献   

20.
Brettanomyces lambicus was isolated and identified from a typical overattenuating Belgian lambic beer and exhibited extracellular and intracellular alpha-glucosidase activities. Production of the intracellular enzyme was higher than production of the extracellular enzyme, and localization studies showed that the intracellular alpha-glucosidase is mostly soluble and partially cell wall bound. Both intracellular and extracellular enzymes were purified by ammonium sulfate precipitation, gel filtration (Sephadex G-150, Sephadex G-200, Ultrogel AcA-44), and ion-exchange chromatography (sulfopropyl-Sephadex C-50, (carboxymethyl-Sephadex C-50). The intracellular alpha-glucosidase exhibited optimum activity at 39 degrees C and pH 6.2. The extracellular enzyme exhibited optimum catalytic activity at 40 degrees C and pH 6.0. The molecular masses of purified intracellular and extracellular alpha-glucosidases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 72,500 and 77,250, respectively. For both enzymes there was a decrease in the rate of hydrolysis with an increase in the degree of polymerization, and both enzymes hydrolyzed dextrins isolated from lambic wort (degrees of polymerization, 3 to 9 and more than 9). The K(m) values for p-nitrophenyl-alpha-d-glucopyranoside, maltose, and maltotriose for the intracellular enzyme were 0.9, 3.4, and 3.7 mM, respectively. The K(i) values for both enzymes were between 28.5 and 57 muM for acarbose and between 7.45 and 15.7 mM for Tris. These enzymes are probably involved in the overattenuation of spontaneously fermented lambic beer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号