首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.

Missing values in mass spectrometry metabolomic datasets occur widely and can originate from a number of sources, including for both technical and biological reasons. Currently, little is known about these data, i.e. about their distributions across datasets, the need (or not) to consider them in the data processing pipeline, and most importantly, the optimal way of assigning them values prior to univariate or multivariate data analysis. Here, we address all of these issues using direct infusion Fourier transform ion cyclotron resonance mass spectrometry data. We have shown that missing data are widespread, accounting for ca. 20% of data and affecting up to 80% of all variables, and that they do not occur randomly but rather as a function of signal intensity and mass-to-charge ratio. We have demonstrated that missing data estimation algorithms have a major effect on the outcome of data analysis when comparing the differences between biological sample groups, including by t test, ANOVA and principal component analysis. Furthermore, results varied significantly across the eight algorithms that we assessed for their ability to impute known, but labelled as missing, entries. Based on all of our findings we identified the k-nearest neighbour imputation method (KNN) as the optimal missing value estimation approach for our direct infusion mass spectrometry datasets. However, we believe the wider significance of this study is that it highlights the importance of missing metabolite levels in the data processing pipeline and offers an approach to identify optimal ways of treating missing data in metabolomics experiments.

  相似文献   

2.
The use of mass spectrometry (MS) is pivotal in analyses of the metabolome and presents a major challenge for subsequent data processing. While the last few years have given new high performance instruments, there has not been a comparable development in data processing. In this paper we discuss an automated data processing pipeline to compare large numbers of fingerprint spectra from direct infusion experiments analyzed by high resolution MS. We describe some of the intriguing problems that have to be addressed, starting with the conversion and pre-processing of the raw data to the final data analysis. Illustrated on the direct infusion analysis (ESI-TOF-MS) of complex mixtures the method exploits the full quality of the high-resolution present in the mass spectra. Although the method is illustrated as a new library search method for high resolution MS, we demonstrate that the output of the preprocessing is applicable to cluster-, discriminant analysis, and related multivariate methods applied directly to mass spectra from direct infusion analysis of crude extracts. This is done to find the relationship between several terverticillate Penicillium species and identify the ions responsible for the segregation.  相似文献   

3.
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.  相似文献   

4.
Pan XY  Tian Y  Huang Y  Shen HB 《Genomics》2011,97(5):257-264
Epistatic miniarray profiling (E-MAP) is a powerful tool for analyzing gene functions and their biological relevance. However, E-MAP data suffers from large proportion of missing values, which often results in misleading and biased analysis results. It is urgent to develop effective missing value estimation methods for E-MAP. Although several independent algorithms can be applied to achieve this goal, their performance varies significantly on different datasets, indicating different algorithms having their own advantages and disadvantages. In this paper, we propose a novel ensemble approach EMDI based on the high-level diversity to impute missing values that consists of two global and four local base estimators. Experimental results on five E-MAP datasets show that EMDI outperforms all single base algorithms, demonstrating an appropriate combination providing complementarity among different methods. Comparison results between several fusion strategies also demonstrate that the proposed high-level diversity scheme is superior to others. EMDI is freely available at www.csbio.sjtu.edu.cn/bioinf/EMDI/.  相似文献   

5.
Quantitative mass spectrometry enables to monitor the abundance of thousands of proteins across biological conditions. Currently, most data analysis approaches rely on the assumption that the majority of the observed proteins remain unchanged across compared samples. Thus, gross morphological differences between cell states, deriving from, e.g., differences in size or number of organelles, are often not taken into account. Here, we analyzed multiple published datasets and frequently observed that proteins associated with a particular cellular compartment collectively increase or decrease in their abundance between conditions tested. We show that such effects, arising from underlying morphological differences, can skew the outcome of differential expression analysis. We propose a method to detect and normalize morphological effects underlying proteomics data. We demonstrate the applicability of our method to different datasets and biological questions including the analysis of sub‐cellular proteomes in the context of Caenorhabditis elegans aging. Our method provides a complementary perspective to classical differential expression analysis and enables to uncouple overall abundance changes from stoichiometric variations within defined group of proteins.  相似文献   

6.
MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information.  相似文献   

7.
Gan X  Liew AW  Yan H 《Nucleic acids research》2006,34(5):1608-1619
Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.  相似文献   

8.
Imaging mass spectrometry (IMS) allows the direct investigation of both the identity and the spatial distribution of the molecular content directly in tissue sections, single cells and many other biological surfaces. In this protocol, we present the steps required to retrieve the molecular information from tissue sections using matrix-enhanced (ME) and metal-assisted (MetA) secondary ion mass spectrometry (SIMS) as well as matrix-assisted laser desorption/ionization (MALDI) IMS. These techniques require specific sample preparation steps directed at optimal signal intensity with minimal redistribution or modification of the sample analytes. After careful sample preparation, different IMS methods offer a unique discovery tool in, for example, the investigation of (i) drug transport and uptake, (ii) biological processing steps and (iii) biomarker distributions. To extract the relevant information from the huge datasets produced by IMS, new bioinformatics approaches have been developed. The duration of the protocol is highly dependent on sample size and technique used, but on average takes approximately 5 h.  相似文献   

9.
Yang  Yang  Xu  Zhuangdi  Song  Dandan 《BMC bioinformatics》2016,17(1):109-116
Missing values are commonly present in microarray data profiles. Instead of discarding genes or samples with incomplete expression level, missing values need to be properly imputed for accurate data analysis. The imputation methods can be roughly categorized as expression level-based and domain knowledge-based. The first type of methods only rely on expression data without the help of external data sources, while the second type incorporates available domain knowledge into expression data to improve imputation accuracy. In recent years, microRNA (miRNA) microarray has been largely developed and used for identifying miRNA biomarkers in complex human disease studies. Similar to mRNA profiles, miRNA expression profiles with missing values can be treated with the existing imputation methods. However, the domain knowledge-based methods are hard to be applied due to the lack of direct functional annotation for miRNAs. With the rapid accumulation of miRNA microarray data, it is increasingly needed to develop domain knowledge-based imputation algorithms specific to miRNA expression profiles to improve the quality of miRNA data analysis. We connect miRNAs with domain knowledge of Gene Ontology (GO) via their target genes, and define miRNA functional similarity based on the semantic similarity of GO terms in GO graphs. A new measure combining miRNA functional similarity and expression similarity is used in the imputation of missing values. The new measure is tested on two miRNA microarray datasets from breast cancer research and achieves improved performance compared with the expression-based method on both datasets. The experimental results demonstrate that the biological domain knowledge can benefit the estimation of missing values in miRNA profiles as well as mRNA profiles. Especially, functional similarity defined by GO terms annotated for the target genes of miRNAs can be useful complementary information for the expression-based method to improve the imputation accuracy of miRNA array data. Our method and data are available to the public upon request.  相似文献   

10.
Microarray gene expression data often contains multiple missing values due to various reasons. However, most of gene expression data analysis algorithms require complete expression data. Therefore, accurate estimation of the missing values is critical to further data analysis. In this paper, an Iterated Local Least Squares Imputation (ILLSimpute) method is proposed for estimating missing values. Two unique features of ILLSimpute method are: ILLSimpute method does not fix a common number of coherent genes for target genes for estimation purpose, but defines coherent genes as those within a distance threshold to the target genes. Secondly, in ILLSimpute method, estimated values in one iteration are used for missing value estimation in the next iteration and the method terminates after certain iterations or the imputed values converge. Experimental results on six real microarray datasets showed that ILLSimpute method performed at least as well as, and most of the time much better than, five most recent imputation methods.  相似文献   

11.
Metabolic flux analysis (MFA) combines experimental measurements and computational modeling to determine biochemical reaction rates in live biological systems. Advancements in analytical instrumentation, such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), have facilitated chemical separation and quantification of isotopically enriched metabolites. However, no software packages have been previously described that can integrate isotopomer measurements from both MS and NMR analytical platforms and have the flexibility to estimate metabolic fluxes from either isotopic steady-state or dynamic labeling experiments. By applying physiologically relevant cardiac and hepatic metabolic models to assess NMR isotopomer measurements, we herein test and validate new modeling capabilities of our enhanced flux analysis software tool, INCA 2.0. We demonstrate that INCA 2.0 can simulate and regress steady-state 13C NMR datasets from perfused hearts with an accuracy comparable to other established flux assessment tools. Furthermore, by simulating the infusion of three different 13C acetate tracers, we show that MFA based on dynamic 13C NMR measurements can more precisely resolve cardiac fluxes compared to isotopically steady-state flux analysis. Finally, we show that estimation of hepatic fluxes using combined 13C NMR and MS datasets improves the precision of estimated fluxes by up to 50%. Overall, our results illustrate how the recently added NMR data modeling capabilities of INCA 2.0 can enable entirely new experimental designs that lead to improved flux resolution and can be applied to a wide range of biological systems and measurement time courses.  相似文献   

12.
Advances in the field of targeted proteomics and mass spectrometry have significantly improved assay sensitivity and multiplexing capacity. The high-throughput nature of targeted proteomics experiments has increased the rate of data production, which requires development of novel analytical tools to keep up with data processing demand. Currently, development and validation of targeted mass spectrometry assays require manual inspection of chromatographic peaks from large datasets to ensure quality, a process that is time consuming, prone to inter- and intra-operator variability and limits the efficiency of data interpretation from targeted proteomics analyses. To address this challenge, we have developed TargetedMSQC, an R package that facilitates quality control and verification of chromatographic peaks from targeted proteomics datasets. This tool calculates metrics to quantify several quality aspects of a chromatographic peak, e.g. symmetry, jaggedness and modality, co-elution and shape similarity of monitored transitions in a peak group, as well as the consistency of transitions’ ratios between endogenous analytes and isotopically labeled internal standards and consistency of retention time across multiple runs. The algorithm takes advantage of supervised machine learning to identify peaks with interference or poor chromatography based on a set of peaks that have been annotated by an expert analyst. Using TargetedMSQC to analyze targeted proteomics data reduces the time spent on manual inspection of peaks and improves both speed and accuracy of interference detection. Additionally, by allowing the analysts to customize the tool for application on different datasets, TargetedMSQC gives the users the flexibility to define the acceptable quality for specific datasets. Furthermore, automated and quantitative assessment of peak quality offers a more objective and systematic framework for high throughput analysis of targeted mass spectrometry assay datasets and is a step towards more robust and faster assay implementation.  相似文献   

13.
Global gel-free proteomic analysis by mass spectrometry has been widely used as an important tool for exploring complex biological systems at the whole genome level. Simultaneous analysis of a large number of protein species is a complicated and challenging task. The challenges exist throughout all stages of a global gel-free proteomic analysis: experimental design, peptide/protein identification, data preprocessing and normalization, and inferential analysis. In addition to various efforts to improve the analytical technologies, statistical methodologies have been applied in all stages of proteomic analyses to help extract relevant information efficiently from large proteomic datasets. In this review, we summarize current applications of statistics in several stages of global gel-free proteomic analysis by mass spectrometry. We discuss the challenges associated with the applications of various statistical tools. Whenever possible, we also propose potential solutions on how to improve the data collection and interpretation for mass-spectrometry-based global proteomic analysis using more sophisticated and/or novel statistical approaches.  相似文献   

14.
Zou X  Zhao M  Shen H  Zhao X  Tong Y  Wang Q  Wei S  Ji J 《Journal of Proteomics》2012,75(17):5516-5522
Isobaric tagging techniques such as iTRAQ and TMT are widely used in quantitative proteomics and especially useful for samples that demand in vitro labeling. Due to diversity in choices of MS acquisition approaches, identification algorithms, and relative abundance deduction strategies, researchers are faced with a plethora of possibilities when it comes to data analysis. However, the lack of generic and flexible software tool often makes it cumbersome for researchers to perform the analysis entirely as desired. In this paper, we present MilQuant, mzXML-based isobaric labeling quantitator, a pipeline of freely available programs that supports native acquisition files produced by all mass spectrometer types and collection approaches currently used in isobaric tagging based MS data collection. Moreover, aside from effective normalization and abundance ratio deduction algorithms, MilQuant exports various intermediate results along each step of the pipeline, making it easy for researchers to customize the analysis. The functionality of MilQuant was demonstrated by four distinct datasets from different laboratories. The compatibility and extendibility of MilQuant makes it a generic and flexible tool that can serve as a full solution to data analysis of isobaric tagging-based quantitation.  相似文献   

15.
MOTIVATION: Gene expression data often contain missing expression values. Effective missing value estimation methods are needed since many algorithms for gene expression data analysis require a complete matrix of gene array values. In this paper, imputation methods based on the least squares formulation are proposed to estimate missing values in the gene expression data, which exploit local similarity structures in the data as well as least squares optimization process. RESULTS: The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. The similar genes are chosen by k-nearest neighbors or k coherent genes that have large absolute values of Pearson correlation coefficients. Non-parametric missing values estimation method of LLSimpute are designed by introducing an automatic k-value estimator. In our experiments, the proposed LLSimpute method shows competitive results when compared with other imputation methods for missing value estimation on various datasets and percentages of missing values in the data. AVAILABILITY: The software is available at http://www.cs.umn.edu/~hskim/tools.html CONTACT: hpark@cs.umn.edu  相似文献   

16.
Data mining application to proteomic data from mass spectrometry has gained much interest in recent years. Advances made in proteomics and mass spectrometry have resulted in considerable amount of data that cannot be easily visualized or interpreted. Mass spectral proteomic datasets are typically high dimensional but with small sample size. Consequently, advanced artificial intelligence and machine learning algorithms are increasingly being used for knowledge discovery from such datasets. Their overall goal is to extract useful information that leads to the identification of protein biomarker candidates. Such biomarkers could potentially have diagnostic value as tools for early detection, diagnosis, and prognosis of many diseases. The purpose of this review is to focus on the current trends in mining mass spectral proteomic data. Special emphasis is placed on the critical steps involved in the analysis of surface-enhanced laser desorption/ionization mass spectrometry proteomic data. Examples are drawn from previously published studies and relevant data mining terminology and techniques are exlained.  相似文献   

17.
18.

Background

Mass spectrometry analyses of complex protein samples yield large amounts of data and specific expertise is needed for data analysis, in addition to a dedicated computer infrastructure. Furthermore, the identification of proteins and their specific properties require the use of multiple independent bioinformatics tools and several database search algorithms to process the same datasets. In order to facilitate and increase the speed of data analysis, there is a need for an integrated platform that would allow a comprehensive profiling of thousands of peptides and proteins in a single process through the simultaneous exploitation of multiple complementary algorithms.

Results

We have established a new proteomics pipeline designated as APP that fulfills these objectives using a complete series of tools freely available from open sources. APP automates the processing of proteomics tasks such as peptide identification, validation and quantitation from LC-MS/MS data and allows easy integration of many separate proteomics tools. Distributed processing is at the core of APP, allowing the processing of very large datasets using any combination of Windows/Linux physical or virtual computing resources.

Conclusions

APP provides distributed computing nodes that are simple to set up, greatly relieving the need for separate IT competence when handling large datasets. The modular nature of APP allows complex workflows to be managed and distributed, speeding up throughput and setup. Additionally, APP logs execution information on all executed tasks and generated results, simplifying information management and validation.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0441-8) contains supplementary material, which is available to authorized users.  相似文献   

19.
Microarray experiments generate data sets with information on the expression levels of thousands of genes in a set of biological samples. Unfortunately, such experiments often produce multiple missing expression values, normally due to various experimental problems. As many algorithms for gene expression analysis require a complete data matrix as input, the missing values have to be estimated in order to analyze the available data. Alternatively, genes and arrays can be removed until no missing values remain. However, for genes or arrays with only a small number of missing values, it is desirable to impute those values. For the subsequent analysis to be as informative as possible, it is essential that the estimates for the missing gene expression values are accurate. A small amount of badly estimated missing values in the data might be enough for clustering methods, such as hierachical clustering or K-means clustering, to produce misleading results. Thus, accurate methods for missing value estimation are needed. We present novel methods for estimation of missing values in microarray data sets that are based on the least squares principle, and that utilize correlations between both genes and arrays. For this set of methods, we use the common reference name LSimpute. We compare the estimation accuracy of our methods with the widely used KNNimpute on three complete data matrices from public data sets by randomly knocking out data (labeling as missing). From these tests, we conclude that our LSimpute methods produce estimates that consistently are more accurate than those obtained using KNNimpute. Additionally, we examine a more classic approach to missing value estimation based on expectation maximization (EM). We refer to our EM implementations as EMimpute, and the estimate errors using the EMimpute methods are compared with those our novel methods produce. The results indicate that on average, the estimates from our best performing LSimpute method are at least as accurate as those from the best EMimpute algorithm.  相似文献   

20.
Discovery of biomarker patterns using proteomic techniques requires examination of large numbers of patient and control samples, followed by data mining of the molecular read-outs (e.g., mass spectra). Adequate signal processing and statistical analysis are critical for successful extraction of markers from these data sets. The protocol, specifically designed for use in conjunction with MALDI-TOF-MS-based serum peptide profiling, is a data analysis pipeline, starting with transfer of raw spectra that are interpreted using signal processing algorithms to define suitable features (i.e., peptides). We describe an algorithm for minimal entropy-based peak alignment across samples. Peak lists obtained in this way, and containing all samples, all peptide features and their normalized MS-ion intensities, can be evaluated, and results validated, using common statistical methods. We recommend visual inspection of the spectra to confirm all results, and have written freely available software for viewing and color-coding of spectral overlays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号