共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Effect of trapping method on species identification of phlebotomine sandflies by MALDI‐TOF MS protein profiling 下载免费PDF全文
P. Halada K. Hlavackova J. Risueño E. Berriatua P. Volf V. Dvorak 《Medical and veterinary entomology》2018,32(3):388-392
Sandflies (Diptera: Psychodidae) (Newstead, 1911) are blood‐feeding insects that transmit human pathogens including Leishmania (Trypanosomatida: Trypanosomatidae) parasites, causative agents of the leishmaniases. To elucidate Leishmania transmission cycles, conclusive identification of vector species is essential. Molecular approaches including matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) protein profiling have recently emerged to complement morphological identification. The aim of this study was to evaluate the effect of the trap type used to collect sandflies, specifically Centers for Disease Control (CDC) light or sticky traps, the two most commonly used in sandfly surveys, on subsequent MALDI‐TOF MS protein profiling. Specimens of five species (Phlebotomus ariasi, Phlebotomus papatasi, Phlebotomus perniciosus, Phlebotomus sergenti, Sergentomyia minuta) collected in periurban and agricultural habitats in southeast Spain were subjected to protein profiling. Acquired protein spectra were queried against an in‐house reference database and their quality assessed to evaluate the trap type effect. The results indicate that trap choice can substantially affect the quality of protein spectra in collected sandflies. Whereas specimens retrieved from light traps produced intense and reproducible spectra that allowed reliable species determination, profiles of specimens from sticky traps were compromised and often did not enable correct identification. Sticky traps should therefore not be used in surveys that deploy MALDI‐TOF MS protein profiling for species identification. 相似文献
3.
4.
5.
Katrin Sparbier Dr. Thomas Wenzel Hassan Dihazi Sabine Blaschke Gerhard‐Anton Müller André Deelder Thomas Flad Markus Kostrzewa 《Proteomics》2009,9(6):1442-1450
The discovery of novel biomarkers by means of advanced detection tools based on proteomic analysis technologies necessitates the development of improved diagnostic methods for application in clinical routine. On the basis of three different application examples, this review presents the limitations of conventional routine diagnostic assays and illustrates the advantages of immunoaffinity enrichment combined with MALDI‐TOF MS. Applying this approach increases the specificity of the analysis supporting a better diagnostic recognition, sensitivity, and differentiation of certain diseases. The use of MALDI‐TOF MS as detection method facilitates the identification of modified peptides and proteins providing additional information. Further, employing respective internal standard peptides allows for relative and absolute quantitation which is mandatory in the clinical context. Although MALDI‐TOF MS is not yet established for clinical routine diagnostics this technology has a high potential for improvement of clinical diagnostics and monitoring therapeutic efficacy. 相似文献
6.
7.
Aims: Vibrio identification by means of traditional microbiological methods is time consuming because of the many biochemical tests that have to be performed to distinguish closely related species. This work aimed at evaluating the use of MALDI‐TOF mass spectrometry for the rapid identification of Vibrio (V.) spp. as an advantageous application to rapidly discriminate the most important Vibrio spp. and distinguish Vibrio spp. from closely related bacterial species like Photobacterium damselae and Grimontia hollisae and other aquatic bacteria like Aeromonas spp. Methods and Results: Starting from sub‐colony amounts of pure cultures grown on agar plates, a very simple sample preparation procedure was established and combined with a rapid and automated measurement protocol that allowed species identification within minutes. Closely related species like Vibrio alginolyticus and Vibrio parahaemolyticus or Vibrio cholerae and Vibrio mimicus could thus be differentiated by defining signatures of species‐identifying biomarker ions (SIBIs). As a reference method for species designation and for determination of relationships between strains with molecular markers, partial rpoB gene sequencing was applied. Conclusions: The MALDI‐TOF MS‐based method as well as the rpoB sequence‐based approach for Vibrio identification described in this study produced comparable classification results. The construction of phylogenetic trees from MALDI‐TOF MS and rpoB sequences revealed a very good congruence of both methods. Significance and Impact of the Study: Our results suggest that whole‐cell MALDI‐TOF MS‐based proteometric characterization represents a powerful tool for rapid and accurate classification and identification of Vibrio spp. and related species. 相似文献
8.
9.
Amaya Albalat Angelique Stalmach Vasiliki Bitsika Justyna Siwy Joost P. Schanstra Alexandros D. Petropoulos Antonia Vlahou Joachim Jankowski Frederik Persson Peter Rossing Thorsten W. Jaskolla Harald Mischak Holger Husi 《Proteomics》2013,13(20):2967-2975
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases). 相似文献
10.
In this work, core‐shell magnetic metal organic framework (MOF) microspheres were successfully synthesized by coating magnetite particles with mercaptoacetic acid and subsequent reactions with ethanol solutions of Cu(OAc)2 and benzene‐1,3,5‐tricarboxylic acid (designated as H3btc) alternately. The resulting Fe3O4@[Cu3(btc)2] possess strong magnetic responsiveness. We applied the novel nanocomposites in the enrichment of low‐concentration standard peptides, peptides in MYO and BSA tryptic digests and in human urine in combination with MALDI‐TOF MS analysis for the first time. In addition, the Cu3(btc)2 MOF shells exhibit strong affinity to peptides, thus providing a rapid and convenient approach to the concentration of low‐abundance peptides. Notably, peptides at an extremely low concentration of 10 pM could be detected by MALDI‐TOF MS after enrichment with the magnetic MOF composites. In brief, the facile synthesis and efficient enrichment process of the Fe3O4@[Cu3(btc)2] microspheres make them promising candidates for the isolation of peptides in even complex biological environments. 相似文献
11.
12.
Hemei Chen Dawei Qi Chunhui Deng Professor Penyuan Yang Xiangmin Zhang 《Proteomics》2009,9(2):380-387
In this work, for the first time, a novel C60‐functionalized magnetic silica microsphere (designated C60‐f‐MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60‐f‐MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low‐concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60‐f‐MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60‐f‐MS microspheres were successfully applied to the enrichment of low‐concentration peptides in tryptic protein digest and human urine via a MALDI‐TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low‐concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene‐derivatized magnetic silica materials are superior to those already available in the market. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel C60‐f‐MS microspheres makes it a promising candidate for isolation of low‐concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate. 相似文献
13.
14.
Influence of storage conditions on MALDI‐TOF MS profiling of gingival crevicular fluid: Implications on the role of S100A8 and S100A9 for clinical and proteomic based diagnostic investigations 下载免费PDF全文
Nicola Lombardo Tiziana Montalcini Sergio Paduano Girolamo Pelaia Rocco Savino Rosa Terracciano 《Proteomics》2016,16(6):1033-1045
Gingival crevicular fluid (GCF) may be a source of diagnostic biomarkers of periodontitis/gingivitis. However, peptide fingerprints may change, depending on GCF collection, handling and storage. We evaluated how storage conditions affect the quality and the reproducibility of MALDI‐TOF profiles of this fluid. GCF was collected on paper strips from four subjects with healthy gingiva. Our findings demonstrated that sample storage conditions significantly affect GCF peptide pattern over time. Specifically, the storage of GCF immediately extracted from paper strips generates less variations in molecular profiles compared to the extraction performed after the storage. Significant spectral changes were detected for GCF samples stored at –20°C directly on the paper strips and extracted after three months, in comparison to the freshly extracted control. Noteworthy, a significant decrease in the peak area of HNP‐3, S100A8, full‐length S100A9 and its truncated form were detected after 3 months at –80°C. The alterations found in the “stored GCF” profile not only may affect the pattern‐based biomarker discovery but also make its use not adequate for in vitro diagnostic test targeting S100A8, S100A9 proposed as potential diagnostic biomarkers for periodontal disease. In summary, this study shows that the best preserved signatures were obtained for the GCF samples eluted in trifluoroacetic acid and then immediately stored at –80°C for 1 month. The wealth of information gained from our data on protein/patterns stability after storage might be helpful in defining new protocols which enable optimal preservation of GCF specimen. 相似文献
15.
Jia Tang Yingchao Liu Dawei Qi Guoping Yao Chunhui Deng Xiangmin Zhang 《Proteomics》2009,9(22):5046-5055
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research. 相似文献
16.
Mark R. Condina Johan O. R. Gustafsson Manuela Klingler‐Hoffmann Christopher J. Bagley Shaun R. McColl Peter Hoffmann 《Proteomics》2010,10(13):2516-2530
The quality of MALDI‐TOF mass spectrometric analysis is highly dependent on the matrix and its deposition strategy. Although different matrix‐deposition methods have specific advantages, one major problem in the field of proteomics, particularly with respect to quantitation, is reproducibility between users or laboratories. Compounding this is the varying crystal homogeneity of matrices depending on the deposition strategy used. Here, we describe a novel optimised matrix‐deposition strategy for LC‐MALDI‐TOF/TOF MS using an automated instrument that produces a nebulised matrix “mist” under controlled atmospheric conditions. Comparisons of this with previously reported strategies showed the method to be advantageous for the atypical matrix, 2,5‐DHB, and improved phosphopeptide ionisation when compared with deposition strategies for CHCA. This optimised DHB matrix‐deposition strategy with LC‐MALDI‐TOF/TOF MS, termed EZYprep LC, was subsequently optimised for phosphoproteome analysis and compared to LC‐ESI‐IT‐MS and a previously reported approach for phosphotyrosine identification and characterisation. These methods were used to map phosphorylation on epidermal growth factor‐stimulated epidermal growth factor receptor to gauge the sensitivity of the proposed method. EZYprep DHB LC‐MALDI‐TOF/TOF MS was able to identify more phosphopeptides and characterise more phosphorylation sites than the other two proteomic strategies, thus proving to be a sensitive approach for phosphoproteome analysis. 相似文献
17.
Mariaimmacolata Preianò Luigi Pasqua Luca Gallelli Olimpio Galasso Giorgio Gasparini Rocco Savino Rosa Terracciano 《Proteomics》2012,12(22):3286-3294
Herein we report the use of mesoporous aluminosilicate (MPAS) for the simultaneous extraction of peptides and lipids from complex body fluids such as human plasma and synovial fluid. We show that MPAS particles, given their mesostructural features with nanometric pore size and high surface area, are an efficient device for simultaneous extraction of peptidome and lipidome from as little as a few microliters of body fluids. The peptides and the lipids, selected and enriched by MPAS particles and rapidly visualized by MALDI‐TOF MS, could form part of a diagnostic profile of the “peptidome” and the “lipidome” of healthy versus diseased subjects in comparative studies. The ability of this approach to rapidly reveal the overall pattern of changes in both lipidome and peptidome signatures of complex biofluids could be of valuable interest for handling large numbers of samples required in ‐omics studies for the purpose of finding novel biomarkers. 相似文献
18.
Phosphorylation is one of the most important PTMs and is estimated to occur on 30% of the mammalian proteome. Its perturbed regulation has been implicated in many pathologies. The rarity of phosphotyrosine compared with phosphoserine or phosphothreonine is prompting the development of more sensitive approaches because proteomic technologies that are currently used to assess tyrosine phosphorylation in proteins are inadequate, identifying only a fraction of the predicted tyrosine phosphoproteome. Here we describe the development of a reproducible, high‐sensitivity methodology for the detection and mapping of phosphotyrosine residues by MS. The anti‐phosphotyrosine antibody 4G10 was coupled covalently to super para‐magnetic beads or by affinity to super para‐magnetic beads with protein G covalently attached. Using this approach, we successfully enriched phosphotyrosine peptides mixed with non‐phosphorylated peptides at a ratio of up to 1:200, enabling detection at a level representing the highest sensitivity reported for tyrosine phosphorylation. The beads were subsequently used to enrich tyrosine phosphopeptides from a digest of the in vitro‐phosphorylated recombinant β‐intracellular region of the granulocyte‐macrophage colony‐stimulating factor receptor, which was subsequently analysed by MALDI‐TOF/TOF MS. Our results define this methodology as a sensitive approach for tyrosine phosphoproteome analysis. 相似文献
19.
Andrea Padoan Daniela Basso Marco La Malfa Carlo‐Federico Zambon Paul Aiyetan Hui Zhang Alda Di Chiara Girolamo Pavanello Rino Bellocco Daniel W. Chan Mario Plebani 《Proteomics》2015,15(9):1476-1485
MALDI‐TOF profiling of low molecular weight peptides (peptidome) usage is limited due to the lack of reproducibility from the confounding inferences of sample preparation, data acquisition, and processing. We applied MALDI‐TOF analysis to profile urine peptidome with the aims to: (i) compare centrifugal ultrafiltration and dialysis pretreatments, (ii) determine whether using signal LOD (sLOD), together with data normalization, may reduce MALDI‐TOF variability. We also investigated the influence of peaks detection on reproducibility. Dialysis allowed to obtain better MALDI‐TOF spectra than ultrafiltration. Within the 1000–4000 m/z range, we identified 120 and 129 peaks in intra‐ and interassay studies, respectively. To estimate the sLOD, serial dilution of pooled urines up to 1/256 were analyzed in triplicate. Six data normalization strategies were investigated–the mean, median, internal standard, relative intensity, TIC, and linear rescaling normalization. Normalization methods alone performed poorly in reducing features variability while when combined to sLOD adjustment showed an overall reduction in features CVs. Applying a feedback signal processing approach, after median normalization and sLOD adjustment, CVs were reduced from 103 to 26% and 113 to 25% for the intra‐ and interassay, respectively, and spectra became more comparable in terms of data dispersion. 相似文献