首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Felix  R. A.  Martin  S.  Pinion  S.  Crawford  D. J. 《Purinergic signalling》2011,8(1):101-112

Pharmacological manipulation of P2X and P2Y receptors has been critical to the elucidation of the biological roles of these receptors within a multitude of physiological and pathological processes. Initial purinergic signalling research made use of compounds based on pyridoxal phosphate, suramin and nucleotide analogues; recently developed compounds are often derivatives of these early tools. Tocris Bioscience first entered the field of purinergic signalling reagents with the commercial release of the pyridoxal phosphate derivative, iso-PPADS. During the past two decades, Tocris has assembled a collection of over 50 compounds for P2 receptor modulation, including research tools commercialised from both academic and industrial laboratories. Recently, a number of P2X subtype-selective compounds have been generated by pharmaceutical company medicinal chemistry programmes, supplementing our range of P2Y-selective compounds. Here, we detail the current, commercially available agonists and antagonists of P2X1,2/3,3,4,7 and P2Y1,6,11,12 receptors; considered together, they form the foundations of a comprehensive P2 receptor pharmacological ‘toolkit’.

  相似文献   

2.
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.  相似文献   

3.
Blocking membrane currents evoked by the activation of purinergic P2X3 receptors localized on nociceptive neurons represents a promising strategy for the development of agents useful for the treatment of chronic pain conditions. Among compounds endowed with such antagonistic action, 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) is an ATP analogue, whose inhibitory activity on P2X receptors has been previously reported. Based on the results of molecular modelling studies performed with homology models of the P2X3 receptor, novel adenosine nucleotide analogues bearing cycloalkyl or arylalkyl substituents replacing the trinitrophenyl moiety of TNP-ATP were designed and synthesized. These new compounds were functionally evaluated on native P2X3 receptors from mouse trigeminal ganglion (TG) sensory neurons using patch clamp recordings under voltage clamp configuration. Our data show that some of these molecules are potent (nanomolar range) and reversible inhibitors of P2X3 receptors, without any apparent effect on trigeminal GABAA and 5-HT3 receptors, whose membrane currents were unaffected by the tested compounds.  相似文献   

4.

Background  

Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (Hd P2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa.  相似文献   

5.
In the present study, the distribution of P2X receptor protein and colocalization of P2X receptors with vasopressin and oxytocin in the supraoptic and paraventricular nuclei of rat hypothalamus was studied using double-labeling fluorescence immunohistochemistry. The results showed that vasopressin-containing neurons expressed P2X2, P2X4, P2X5 and P2X6 receptor and oxytocin-containing neurons expressed P2X2, P2X4 and P2X5 receptors in the supraoptic nucleus. In the paraventricular nucleus, vasopressin-containing neurons expressed P2X4, P2X5 and P2X6 receptors, while oxytocin-containing neurons expressed P2X4 receptors. This study provides the first evidence that P2X receptor subunits are differentially expressed on vasopressin- and oxytocin-containing neurons in the supraoptic and paraventricular nuclei, and hence, provides a substantial neuroanatomical basis for possible functional interactions between the purinergic and vasopressinergic systems, and the purinergic and oxytocinergic systems in the rat hypothalamus. Wei Guo and Jihu Sun contributed equally to this work.  相似文献   

6.
Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y1 and P2Y12 receptors, a P2Y14 receptor (GPR105) of unknown function, and anti-aggregatory A2A and A2B adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure–activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y1, P2Y12, and P2Y14 receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y12 receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y12 receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y1 receptor or the P2Y12 receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A2A AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A2A agonist CGS21680 and the P2Y1 receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.  相似文献   

7.
Seven P2X purinergic receptor subunits have been identified: P2X1–P2X7. The overlapping expression of P2X2, P2X4 and P2X6 subunits has been shown in different cell types, and functional analysis of P2X receptors in Leydig cells suggests that the three subunits might interact. Here, His6-tagged P2X2, HA-tagged P2X4 and FLAG-tagged P2X6 subunits were co-expressed in tsA 201 cells. After sequential co-immunoprecipitation using anti-HA and anti-FLAG beads, all three subunits were present, demonstrating their interaction. Atomic force microscopy (AFM) imaging revealed receptors that were specifically decorated by both an anti-His6 antibody and an anti-HA Fab fragment, indicating the presence of a P2X2/4/6 heterotrimer. To our knowledge, this is the first report of a P2X receptor containing three different subunits.  相似文献   

8.
9.
Purinergic signaling has broad physiological significance to the hearing organ, involving signal transduction via ionotropic P2X receptors and metabotropic G-protein-coupled P2Y and P1 (adenosine), alongside conversion of nucleotides and nucleosides by ecto-nucleotidases and ecto-nucleoside diphosphokinase. In addition, ATP release is modulated by acoustic overstimulation or stress and involves feedback regulation. Many of these principal elements of the purinergic signaling complex have been well characterized in the cochlea, while the characterization of P2Y receptor expression is emerging. The present study used immunohistochemistry to evaluate the expression of five P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12, during development of the rat cochlea. Commencing in the late embryonic period, the P2Y receptors studied were found in the cells lining the cochlear partition, associated with establishment of the electrochemical environment which provides the driving force for sound transduction. In addition, early postnatal P2Y2 and P2Y4 protein expression in the greater epithelial ridge, part of the developing hearing organ, supports the view that initiation and regulation of spontaneous activity in the hair cells prior to hearing onset is mediated by purinergic signaling. Sub-cellular compartmentalization of P2Y receptor expression in sensory hair cells, and diversity of receptor expression in the spiral ganglion neurons and their satellite cells, indicates roles for P2Y receptor-mediated Ca2+-signaling in sound transduction and auditory neuron excitability. Overall, the dynamics of P2Y receptor expression during development of the cochlea complement the other elements of the purinergic signaling complex and reinforce the significance of extracellular nucleotide and nucleoside signaling to hearing.  相似文献   

10.
Primary cilium has emerged as mechanosensor to subtle flow variations in epithelial cells, but its role in shear stress detection remains controversial. To probe the function of this non-motile organelle in shear stress detection by cells, we compared calcium signalling responses induced by shear stress in ciliated and unciliated MDCK cells. Cytosolic free Ca2+ ([Ca2+]i) was measured using Fura-PE3 video imaging fluorescence microscopy in response to shear stress due to laminar flow (385 μl s?1). Our results show that both unciliated and ciliated MDCK cells are shear stress sensitive via ATP release and autocrine feedback through purinergic receptors. However, purinergic calcium signals differed in response intensity and receptor subtypes. In unciliated cells, shear stress-induced elevation in [Ca2+]i was predominantly mediated through P2X receptors (P2XR). In contrast, calcium mobilization in ciliated MDCK cells resulted from P2YRs and store-operated Ca2+-permeable channels besides P2XRs. These findings lend support to the hypothesis that ATP release in response to shear stress is independent of the primary cilium and that transduction of mechanical strain into a specific biochemical responses stems on the mobilization of different sets of purinergic receptors.  相似文献   

11.
12.
Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N?=?7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM)?>?ATP (EC50 2.2 ± 1.1 μM)?=?UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (<?30 μM) and UDP-glucose (<?30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0?±?8.5% max inhibition; N?=?7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0?±?8.4% max inhibition; N?=?6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues.  相似文献   

13.
Extracellular ATP through the activation of the P2X and P2Y purinergic receptors affects the migration, proliferation and differentiation of many types of cells, including stem cells. High plasticity, low immunogenicity and immunomodulation ability of mesenchymal stem cells derived from human endometrium (eMSCs) allow them to be considered a prominent tool for regenerative medicine. Here, we examined the role of ATP in the proliferation and migration of human eMSCs. Using a wound healing assay, we showed that ATP‐induced activation of purinergic receptors suppressed the migration ability of eMSCs. We found the expression of one of the ATP receptors, the P2X7 receptor in eMSCs. In spite of this, cell activation with specific P2X7 receptor agonist, BzATP did not significantly affect the cell migration. The allosteric P2X7 receptor inhibitor, AZ10606120 also did not prevent ATP‐induced inhibition of cell migration, confirming that inhibition occurs without P2X7 receptor involvement. Flow cytometry analysis showed that high concentrations of ATP did not have a cytotoxic effect on eMSCs. At the same time, ATP induced the cell cycle arrest, suppressed the proliferative and migration capacity of eMSCs and therefore could affect the regenerative potential of these cells.  相似文献   

14.
Recently, one of the P2 purinergic receptors, the P2X7 receptor, has been extensively studied in nervous system and important functions have been revealed in both astrocytes and microglia. Stimulation of the receptors induces a sustained and nondesensitized increase in intracellular Ca2+ concentration ([Ca2+]i). In astrocytes purinergic receptors primarily regulate neurotransmission by inducing gliotransmitters release whereas in microglia the receptors stimulate the processing and release of proinflammation cytokines such as interleukin-1 and are thereby involved in inflammation and neurodegeneration. Thus, P2X7 receptors are considered not only to exert physiological functions but also mediate cell death. P2X7 receptors have also been identified in various cancer cells and in neuroblastoma cells. In these cells, the P2X7 receptor-mediated sustained Ca2+ signal is important in maintaining cellular viability and growth. Accordingly, these findings not only lead to a better understanding of roles of the receptor but also prompt the development of more potent, selective and safer P2X7 selective antagonists. These emerging antagonists bring new hope in the treatment of inflammatory-induced neurodegenerative diseases as well as neuroblastoma.  相似文献   

15.
Like in other vertebrates, the anterior part of the telencephalon of amphibians mainly consists of the olfactory bulb (OB), but different from higher vertebrates, the lateral telencephalic ventricles of larval Xenopus laevis expand deep into the anterior telencephalon. The neurogenic periventricular zone (PVZ) of the lateral ventricles generates new OB neurons throughout the animal’s lifetime. We investigated the ultrastructural organization of the PVZ and found that within a time period of 24 h, 42.54 ± 6.65% of all PVZ cells were actively proliferating. Functional purinergic receptors are widespread in the central nervous system and their activation has been associated with many critical physiological processes, including the regulation of cell proliferation. In the present study we identified and characterized the purinergic system of the OB and the PVZ. ATP and 2MeSATP induced strong [Ca2+]i increases in cells of both regions, which could be attenuated by purinergic antagonists. However, a more thorough pharmacological investigation revealed clear differences between the two brain regions. Cells of the OB almost exclusively express ionotropic P2X purinergic receptor subtypes, whereas PVZ cells express both ionotropic P2X and metabotropic P1 and P2Y receptor subtypes. The P2X receptors expressed in the OB are evidently not involved in the immediate processing of olfactory information.  相似文献   

16.
The ependyma of the spinal cord harbours stem cells which are activated by traumatic spinal cord injury. Progenitor-like cells in the central canal (CC) are organized in spatial domains. The cells lining the lateral aspects combine characteristics of ependymocytes and radial glia (RG) whereas in the dorsal and ventral poles, CC-contacting cells have the morphological phenotype of RG and display complex electrophysiological phenotypes. The signals that may affect these progenitors are little understood. Because ATP is massively released after spinal cord injury, we hypothesized that purinergic signalling plays a part in this spinal stem cell niche. We combined immunohistochemistry, in vitro patch-clamp whole-cell recordings and Ca2+ imaging to explore the effects of purinergic agonists on ependymal progenitor-like cells in the neonatal (P1–P6) rat spinal cord. Prolonged focal application of a high concentration of ATP (1 mM) induced a slow inward current. Equimolar concentrations of BzATP generated larger currents that reversed close to 0 mV, had a linear current–voltage relationship and were blocked by Brilliant Blue G, suggesting the presence of functional P2X7 receptors. Immunohistochemistry showed that P2X7 receptors were expressed around the CC and the processes of RG. BzATP also generated Ca2+ waves in RG that were triggered by Ca2+ influx and propagated via Ca2+ release from internal stores through activation of ryanodine receptors. We speculate that the intracellular Ca2+ signalling triggered by P2X7 receptor activation may be an epigenetic mechanism to modulate the behaviour of progenitors in response to ATP released after injury.  相似文献   

17.
Roles of P2 receptors in glial cells: focus on astrocytes   总被引:1,自引:0,他引:1  
Central nervous system glial cells release and respond to nucleotides under both physiological and pathological conditions, suggesting that these molecules play key roles in both normal brain function and in repair after damage. In particular, ATP released from astrocytes activates P2 receptors on astrocytes and other brain cells, allowing a form of homotypic and heterotypic signalling, which also involves microglia, neurons and oligodendrocytes. Multiple P2X and P2Y receptors are expressed by both astrocytes and microglia; however, these receptors are differentially recruited by nucleotides, depending upon specific pathophysiological conditions, and also mediate the long-term trophic changes of these cells during inflammatory gliosis. In astrocytes, P2-receptor-induced gliosis occurs via activation of the extracellular-regulated kinases (ERK) and protein kinase B/Akt pathways and involves induction of inflammatory and anti-inflammatory genes, cyclins, adhesion and antiapoptotic molecules. While astrocytic P2Y1 and P2Y2,4 are primarily involved in short-term calcium-dependent signalling, multiple P2 receptor subtypes seem to cooperate to astrocytic long-term changes. Conversely, in microglia, exposure to inflammatory and immunological stimuli results in differential functional changes of distinct P2 receptors, suggesting highly specific roles in acquisition of the activated phenotype. We believe that nucleotide-induced activation of astrocytes and microglia may originally start as a defence mechanism to protect neurons from cytotoxic and ischaemic insults; dysregulation of this process in chronic inflammatory diseases eventually results in neuronal cell damage and loss. On this basis, full elucidation of the specific roles of P2 receptors in these cells may help exploit the beneficial neuroprotective features of activated glia while attenuating their harmful properties and thus provide the basis for novel neuroprotective strategies that specifically target the purinergic system.  相似文献   

18.
Previous research from our laboratory has demonstrated a novel phenomenon whereby GPCRs play a role in inhibiting cytokine-mediated c-Jun N-terminal kinase (JNK) signalling. So far this novel phenomenon seems to have been vastly overlooked, with little research in the area. Therefore, in this study we explored this further; by assessing the potential of P2YRs to mediate inhibition of cytokine-mediated JNK signalling and related functional outcomes in human endothelial cells. We utilised primary endothelial cells, and employed the use of endogenous activators of P2YRs and well characterised pharmacological inhibitors, to assess signalling parameters mediated by P2YRs, Interleukin-1β (IL-1β), TNFα and JNK. Activation of P2YRs with adenosine tri-phosphate (ATP) resulted in a time- and concentration-dependent inhibition of IL-1β-mediated phosphorylation of JNK and associated kinase activity. The effect was specific for cytokine-mediated JNK signalling, as ATP was without effect on JNK induced by other non-specific activators (e.g. sorbitol, anisomycin), nor effective against other MAPK pathways such as p38 and the canonical NFκB cascade. Pharmacological studies demonstrated a role for the P2Y11 receptor in mediating this effect, but not the P2Y1 nor the adenosine receptors (A1, A2A, A2B & A3). The novel Gαq/11 inhibitor YM254890 and a protein kinase A (PKA) inhibitor H89 both partially reversed ATP-mediated inhibition of IL-1β-stimulated JNK indicating involvement of both Gαq/11 and Gαs mediated pathways. ATP also partially reversed IL-1β-mediated induction of cyclo‑oxygenase-2 (COX-2) and E-selectin. Collectively, these studies indicate the potential for activation of purinergic receptors to protect the endothelium from inflammatory driven JNK activation and may be a new target for inflammatory disease therapy.  相似文献   

19.
Dutton  J. L.  Hansen  M. A.  Balcar  V. J.  Barden  J. A.  Bennett  M. R. 《Brain Cell Biology》1999,28(1):4-16
Postnatal development of the distribution of different isoforms of purinergic (P2X) receptors on smooth muscle cells in relation to the development of the innervation of the cells by nerve varicosities in the rat urinary bladder has been determined with immunofluorescence and confocal microscopy. Antibodies against the extracellular domains of the P2X1 to P2X6 receptors were used to detect the receptors in the bladder. Several other antibodies were used to identify sympathetic varicosities and Schwann cells. At one day postnatal (D1) there were few strings of varicosities denoting isolated axons, with most axons confined to large nerve trunks. Small size clusters of P2X1 to P2X6 receptor subtypes (about 0.4 µm diameter) were observed in the muscle which were independent of each other, and sometimes juxtaposed to the rare isolated varicosity strings. At D4 large numbers of strings of varicosities could be discerned throughout the detrusor. Most of these clouds of small P2X1 to P2X6 receptor clusters in their immediate vicinity. Some of these were colocalised with the varicosities, which were of parasympathetic origin as they failed to counter-stain with antibodies to tyrosine hydroxylase. Up to D14 there was a gradual coalescence of many of the isolated P2X1–6 small receptor clusters so that they became colocalised, often at varicosities. Most of the varicosities in isolated strings possessed receptor clusters at this time. By D21 it was rare to find varicosity strings in the detrusor that were not either in close juxtaposition with P2X small receptor clusters or possessing such clusters in colocalisation. However, large numbers of small P2X receptor clusters, many of which consisted of a mixture of isoforms, could be found spatially unrelated to nerve varicosities throughout the detrusor muscle. In the adult, single axons were either coextensive with one or more isoforms of P2X receptor clusters or these were immediately juxtaposed to the axons so that is was rare to find a varicosity that did not possess a receptor cluster. However, different combinations of colocalised P2X receptor isoforms could still be discerned in small clusters unrelated to varicosities. These observations are discussed in relation to the mechanism of formation of the receptor clusters and their migration beneath parasympathetic varicosities during development.  相似文献   

20.
Purinergic receptors, also known as purinoceptors, are ligand gated membrane ion channels involved in many cellular functions. Among all identified purinergic receptors, P2X7 subform is unique since it induces the caspase activity, cytokine secretion, and apoptosis. The distribution of P2X7 receptors, and the need of high concentration of ATP required to activate this receptor exhibited its ability to function as ‘danger’ sensor associated with tissue inflammation and damage. Further, the modulation of other signalling pathways associated with P2X7 has also been proposed to play an important role in the control of macrophage functions and inflammatory responses, especially towards lipopolysaccharides. Experimentally, researchers have also observed the decreased severity of inflammatory responses in P2X7 receptor expressing gene (P2RX7) knockout (KO) phenotypes. Therefore, newly developed potent antagonists of P2X7 receptor would serve as novel therapeutic agents to combat various inflammatory conditions. In this review article, we tried to explore various aspects of P2X7 receptors including therapeutic potential, and recent discoveries and developments of P2X7 receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号