首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective chemical control relies on reducing vector population size. However, insecticide selection pressure is often associated with the development of resistant populations that reduce control success. In treated areas, these resistant individuals present an adaptive advantage due to enhanced survival. Resistance can also lead to negative effects when the insecticide pressure ceases. In this study, the biological effects of deltamethrin resistance were assessed in the Chagas disease vector Triatoma infestans. The length of each developmental stage and complete life cycle, mating rate, and fecundity were evaluated. Susceptible and resistant insects presented similar mating rates. A reproductive cost of resistance was expressed as a lower fecundity in the resistant colony. Developmental costs in the resistant colony were in the form of a shortening of the second and third nymph stage duration and an extension of the fifth stage. A maternal effect of deltamethrin resistance is suggested as these effects were identified in resistant females and their progeny independently of the mated male's deltamethrin response. Our results suggest the presence of pleiotropic effects of deltamethrin resistance. Possible associations of these characters to other traits such as developmental delays and behavioral resistance are discussed.  相似文献   

2.
Deltamethrin‐based campaigns to control Triatoma infestans (Klug) (Hemiptera: Reduviidae) have decreased in success as a result of the development of insecticide resistance. We compared the in vitro effects of the pyrethroid deltamethrin and two doses of the organophosphate fenitrothion, presented on different materials, on T. infestans from La Esperanza, Argentina. Laboratory tests demonstrated a decrease in susceptibility to deltamethrin in the field population [LD50: 30.32 nanograms per insect (ng/i)] compared with the reference population (LD50: 0.13 ng/i), giving a high resistance ratio of 233.42. By contrast, similar susceptibility to fenitrothion was assessed in both the field and reference populations (LD50: 21.65 ng/i and 21.38 ng/i, respectively). The effectiveness of the formulated insecticides varied according to the surfaces to which they were applied. The application of fenitrothion formulations to glass or brick resulted in mortality of 90–100%. The application of fenitrothion formulations to wood or mud caused mortality in the range of 6.7–56.7%. Resistant insects presented low mortality when exposed to the deltamethrin formulation and high mortality when exposed to fenitrothion formulations. Moreover, the insecticides demonstrated residual activity only when applied to glass. The present work demonstrates that fenitrothion is an alternative to pyrethroids for the management of deltamethrin‐resistant insects in La Esperanza. However, this effectiveness is not sustained over time.  相似文献   

3.
Triatoma infestans (Heteroptera: Reduviidae) Klug is the main vector of Chagas disease in Latin America. Resistance to deltamethrin was reported in Argentina and recently associated with reproductive and longevity trade‐offs. The objectives of the present study were to describe the demographic consequences of deltamethrin resistance in T. infestans and to establish possible target stages for chemical control in susceptible and resistant colonies. A stage‐classified matrix model was constructed based on the average stage length for susceptible, resistant and reciprocal matings' progeny. The differences between colonies were analysed by prospective and retrospective analysis. The life table parameters indicated reduced fecundity, fertility and population growth in resistant insects. The retrospective analysis suggested the latter was associated with lower reproductive output and increased fifth‐instar nymph stage length. The prospective analysis suggested that the adult stage should be the main target for insecticide control. Although, fifth‐instar nymphs should also be targeted when resistance has been detected. The presented results show demographic effects of deltamethrin resistance in T. infestans. While the older stages could be the main targets for chemical control, this approach is impeded by their higher tolerance to insecticides. It is concluded that the different mode of action insecticides would be more effective than a dose increase for the control of deltamethrin‐resistant T. infestans.  相似文献   

4.
Responses to artificial selection on body mass in the maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) were investigated to determine whether changes in body mass are associated with insecticide susceptibility, rate of population growth, and metabolic rate. Two strains of the maize weevil differing in susceptibility to pyrethroid insecticides were subjected to bidirectional selection on body mass. The susceptible strain responded to selection resulting in individuals with lower or higher body mass, but the resistant strain responded significantly only to selection for lower body mass. The resistant strain selected for low body mass increased its level of deltamethrin resistance in 44 × . In contrast, selection for low body mass in the susceptible parental strain led to increased deltamethrin susceptibility (50 × ) and selection for high body mass increased deltamethrin resistance (4 × ). Thus, the correlated response of insecticide resistance to selection for body mass differed between strains, a likely consequence of their distinct genetic background. Regardless, body mass was positively correlated with fitness (reproductive output) (r = 0.79; P < 0.001), while such correlation with respiration rate was significant only at P = 0.07 (r = 0.44). Therefore, the association between body mass and deltamethrin resistance is population‐dependent in the maize weevil, and the confluence of deltamethrin resistance and high body mass in a given strain will likely favour its energy metabolism and lead to the mitigation of fitness costs usually associated with insecticide resistance. The genetic background and selection history of insecticide resistant populations should not be neglected since they may favour the confluence of insecticide resistance with mitigation mechanisms of its associated fitness costs limiting the tactics available to their management.  相似文献   

5.
抗溴氰菊酯家蝇在不同用药方式下的敏感性变化及其机制   总被引:3,自引:0,他引:3  
邱立红  李学锋 《昆虫学报》1999,42(3):248-256
以具有极高抗水平的抗溴氰菊酯家蝇Musca domestica vicina Macquart DR0品系为试虫,模拟田间几种常见的用药方式(混用、轮用、使用增效剂),在室内进行平行汰选,并以不用药和继续用原药汰选的为比较,研究试虫在这几种用药方式下的敏感性变化及其变化机制。抗性家蝇用辛溴混剂、辛硫磷以及溴氰菊酯+SV1汰选后,在F16(F17)代以前,对溴氰菊酯及汰选药剂的抗性发展相对都比较缓慢;F16(F17)代以后,用溴氰菊酯+SV1汰选的家蝇对溴氰菊酯的敏感性迅速下降,抗性发展很快。家蝇对溴氰菊酯的敏感性变化与药剂中溴氰菊酯的选择压有关。生化分析结果表明,在不同用药方式汰选下,家蝇体内酯酶、多功能氧化酶、谷胱甘肽-S-转移酶、乙酰胆碱酯酶的酶活或特性发生了不同的变化。  相似文献   

6.
Insecticide resistance in the malaria vector Anopheles gambiae s.l. (Diptera: Culicidae) threatens insecticide‐based control efforts, necessitating regular monitoring. We assessed resistance in field‐collected An. gambiae s.l. from Jinja, Uganda using World Health Organization (WHO) biosassays. Only An. gambiae s.s. and An. arabiensis (?70%) were present. Female An. gambiae exhibited extremely high pyrethroid resistance (permethrin LT50 > 2 h; deltamethrin LT50 > 5 h). Female An. arabiensis were resistant to permethrin and exhibited reduced susceptibility to deltamethrin. However, while An. gambiae were DDT resistant, An. arabiensis were fully susceptible. Both species were fully susceptible to bendiocarb and fenitrothion. Kdr 1014S has increased rapidly in the Jinja population of An. gambiae s.s. and now approaches fixation (?95%), consistent with insecticide‐mediated selection, but is currently at a low frequency in An. arabiensis (0.07%). Kdr 1014F was also at a low frequency in An. gambiae. These frequencies preclude adequately‐powered tests for an association with phenotypic resistance. PBO synergist bioassays resulted in near complete recovery of pyrethroid susceptibility suggesting involvement of CYP450s in resistance. A small number (0.22%) of An. gambiae s.s. ×An. arabiensis hybrids were found, suggesting the possibility of introgression of resistance alleles between species. The high levels of pyrethroid resistance encountered in Jinja threaten to reduce the efficacy of vector control programmes which rely on pyrethroid‐impregnated bednets or indoor spraying of pyrethroids.  相似文献   

7.
The insecticide resistance status of Culex quinquefasciatus Say (Diptera: Culicidae) to DDT and deltamethrin across army cantonments and neighbouring villages in northeastern India was investigated. In India, DDT is still the insecticide of choice for public health programmes. In military stations, pyrethroids, especially deltamethrins, are used for insecticide‐treated nets (ITNs). Recent information on the levels of resistance to DDT and deltamethrin in mosquito populations of northeastern India is scare. Continued monitoring of insecticide resistance status, identification of the underlying mechanisms of resistance in local mosquito populations and the establishment of a baseline data bank of this information are of prime importance. Insecticide susceptibility assays were performed on wild‐caught adult female Cx. quinquefasciatus mosquitoes to the discriminating doses recommended by the World Health Organisation (WHO) to DDT (4%) and deltamethrin (0.05%). Across all study sites, mortality as a result of DDT varied from 11.9 to 50.0%, as compared with 91.2% in the susceptible laboratory strain (S‐Lab), indicating that Cx. quinquefasciatus is resistant to DDT. The species was found to be 100% susceptible to deltamethrin in all study sites except Benganajuli and Rikamari. Knock‐down times (KDT) in response to deltamethrin varied significantly between study sites (P < 0.01) from 8.3 to 17.8 min for KDT50 and 37.4 to 69.5 min for KDT90. All populations exceeded the threshold level of alpha‐esterase, beta‐esterase and glutathion S‐transferase (GST) established for the S‐Lab susceptible strain, and all populations had 100% elevated esterase and GST activity, except Missamari and Solmara. Beta‐esterase activity in Field Unit II (96.9%) was less than in any of the other populations. Benganajuli had the highest activity level for all the enzymes tested. There was a significant correlation between all enzyme activity levels and insecticide resistance phenotype by populations (P < 0.05). The results presented here provide the first report and baseline information of the insecticide resistance status of Cx. quinquefasciatus in northeastern India, and associated information about biochemical mechanisms that are essential for monitoring the development of insecticide resistance in the area.  相似文献   

8.
The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), has developed resistance to various insecticides. Relative fitness of one susceptible strain (Sv) and two strains selected for resistance to diflubenzuron (Rt) and deltamethrin (Rv), respectively, was measured in the absence of insecticide selection pressure. Mating rate, fecundity, fertility, developmental time, fifth instar weight, and adult longevity were compared. Both resistant strains were less fecund and fertile, developed more slowly, weighed less, and had shorter life-spans than the susceptible strain. These results indicate that biological constraints are associated with insecticide resistance in the codling moth. We also found that fitness estimates of the Rv strain did not differ statistically from those of the Rt strain. Enhanced mixed-function oxidase and glutathione-S-transferase activities have been shown to be involved in insecticide resistance in both Rt and Rv strains. This suggests that the fitness cost described in both resistant strains was mainly associated to metabolic resistance. The impact of such deleterious pleiotropy of insecticide resistance in C. pomonella in terms of resistance management in the field is discussed.  相似文献   

9.
Anopheles subpictus s.l. Grassi (Diptera: Culicidae) is a malaria vector in South Asia, where insecticides are the mainstay for vector control interventions. Information on any variation in metabolic enzyme levels in mosquitoes is helpful with respect to adapting alternative strategies for vector control. The scarce data on the biochemical basis of insecticide resistance in malaria vectors of Pakistan limit the available information for vector control interventions within the country. The insecticide susceptibility status and its biochemical basis against dichlorodiphenyltrichloroethane (DDT) (4%), deltamethrin (0.05%) and permethrin (0.75%) in An. subpictus s.l. collected from all Tehsils of district Kasur were evaluated. For this purpose, a World Health Organization susceptibility bioassay was performed followed by the detection of altered metabolic enzyme activity using biochemical assays. Similarly, a significant difference in knock‐down effect was observed among field collected and susceptible strain against all insecticides 24 h post exposure. The overall mean mortality rates of DDT, deltamethrin and permethrin were 27.86% [95% confidence interval (CI) = 29.65–26.06], 44.89% (95% CI = 46.23–43.54) and 78.82% (95% CI = 80.16–77.47), respectively. The biochemical assays revealed an elevated level of metabolic enzymes in the field population. The results provide evidence of resistance against organochlorine and pyrethroid groups in a field population of An. subpictus s.l. from district Kasur mediated by multiple metabolic mechanisms, including acetylcholinesterases, esterases, cytochrome P450 and glutathione S‐transferases.  相似文献   

10.
Global efforts to control Aedes mosquito-transmitted pathogens still rely heavily on insecticides. However, available information on vector resistance is mainly restricted to mosquito populations located in residential and public areas, whereas commercial settings, such as hotels are overlooked. This may obscure the real magnitude of the insecticide resistance problem and lead to ineffective vector control and resistance management. We investigated the profile of insecticide susceptibility of Aedes aegypti mosquitoes occurring at selected hotel compounds on Zanzibar Island. At least 100 adults Ae. aegypti females from larvae collected at four hotel compounds were exposed to papers impregnated with discriminant concentrations of DDT (4%), permethrin (0.75%), 0.05 deltamethrin (0.05%), propoxur (0.1%) and bendiocarb (0.1%) to determine their susceptibility profile. Allele-specific qPCR and sequencing analysis were applied to determine the possible association between observed resistance and presence of single nucleotide polymorphisms (SNPs) in the voltage-gated sodium channel gene (VGSC) linked to DDT/pyrethroid cross-resistance. Additionally, we explored the possible involvement of Glutathione-S-Transferase gene (GSTe2) mutations for the observed resistance profile. In vivo resistance bioassay indicated that Ae. aegypti at studied sites were highly resistant to DDT, mortality rate ranged from 26.3% to 55.3% and, moderately resistant to deltamethrin with a mortality rate between 79% to and 100%. However, genotyping of kdr mutations affecting the voltage-gated sodium channel only showed a low frequency of the V1016G mutation (n = 5; 0.97%). Moreover, for GSTe2, seven non-synonymous SNPs were detected (L111S, C115F, P117S, E132A, I150V, E178A and A198E) across two distinct haplotypes, but none of these were significantly associated with the observed resistance to DDT. Our findings suggest that cross-resistance to DDT/deltamethrin at hotel compounds in Zanzibar is not primarily mediated by mutations in VGSC. Moreover, the role of identified GSTe2 mutations in the resistance against DDT remains inconclusive. We encourage further studies to investigate the role of other potential insecticide resistance markers.  相似文献   

11.
BackgroundIn Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance.Method and resultsThe insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species.ConclusionThe present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.  相似文献   

12.
《Journal of Asia》2020,23(4):1248-1254
The sweet potato whitefly, Bemisia tabaci Gennadius, is an important insect pest of many crops including vegetables through direct feeding damage and as a vector of several plant viruses. Intensive use of insecticides has led to the development of insecticide resistance in global B. tabaci populations. This study was conducted to establish susceptibility levels to deltamethrin, thiamethoxam and pyriproxyfen in seven geographically different populations of B. tabaci MEAM1 adults in Oman. All B. tabaci populations showed very low to low level of resistance (2.1–12.3 fold) to deltamethrin. All B. tabaci populations showed no resistance to very low level of resistance to thiamethoxam (2.2–6.2 fold) and pyriproxyfen (2.4–3.5 fold). A likelihood analysis showed the possibility for control failure in two populations (Barka and Salalah) to deltamethrin, however, no possible failure was detected in all populations for thiamethoxam and pyriproxyfen. An insecticide resistance dynamics study in one population (SQU-1) showed a loss in susceptibility to deltamethrin with increase in the LC50 value from 25.1 mg L−1 to 84.5 mg L−1 between 2017 and 2019 resulting in 5.3 fold increase in RF. The study results determined that several B. tabaci populations are at the initial stages of resistance development to deltamethrin and cross-resistance with thiamethoxam and pyriproxyfen. Vegetable farmers in Oman, the Barka and Salalah regions in particular, should be cautious in the repeated use of one class of insecticide alone.  相似文献   

13.
Pyrethroid resistance has been detected in Triatoma infestans (Klug) (Hemiptera: Reduviidae) specimens from different areas of Argentina and Bolivia. Genes conferring resistance can have a pleiotropic effect with epidemiological and evolutionary consequences. This research studied excretion/defecation patterns in deltamethrin‐resistant T. infestans in order to elucidate its biological performance, adaptive consequences and role in the transmission of Chagas' disease. One deltamethrin‐susceptible strain and two deltamethrin‐resistant strains were used. Fifth‐instar nymphs were fed ad libitum and their defecations recorded during and after the first or second feeding in the stadium. Resistant insects began to defecate later, defecated less, showed a lower proportion of defecating individuals and lower defecation indices compared with susceptible insects during the first hour after feeding. The number of bloodmeals in the stadium did not affect the main variables determining the pattern of defecation. The present study suggests that alterations in the excretion/defecation pattern in resistant insects entail an adaptive cost and, considering only this pattern, determine a lower capacity for transmission of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) compared with susceptible insects.  相似文献   

14.
Resistance levels to insecticides used in control of Chagas Disease vectors were assessed in two species of bugs (Hemiptera: Reduviidae): Triatoma infestans (Klug) from Brazil and Rhodnius prolixus Stål from Venezuela. The resistance ratios, compared to susceptible laboratory strains, were determined by topical application bioassays. The T. infestans PA strain exhibited resistance ratios of 7× to deltamethrin, 3.6× to β‐cyfluthrin and 3.3× to cypermethrin, but was susceptible to β‐cypermethrin and lambda‐cyhalothrin. Rhodnius prolixus CA strain showed resistance to all the pyrethroids evaluated, the resistance ratios ranging between 4.5× to lambda‐cyhalothrin and 12.4× to cypermethrin. Deltamethrin resistance in both strains was decreased by piperonyl butoxide, suggesting oxidative metabolism as cause of resistance.  相似文献   

15.
Insecticide resistance in the codling moth, Cydia pomonella, partly results from increased metabolic detoxification. The aim of this study was to follow the age variations in larval susceptibility to deltamethrin and teflubenzuron in one susceptible (S) strain, and two resistant (Rv and Rt) ones selected for resistance to deltamethrin and diflubenzuron, respectively. The age variation of the activities of cytochrome P450-dependent monooxygenase (MFO), glutathione S-transferases (GST), and esterases in S and both resistant strains were simultaneously investigated. The highest levels of insecticide resistance were recorded in late instars in both resistant strains, although Rv neonates exhibited enhanced resistance to deltamethrin. The involvement of an additional deltamethrin-specific mechanism of resistance, which could be mainly expressed in early instars, was supported by previous demonstration of a kdr point mutation in the Rv strain. The cross-resistance between deltamethrin and teflubenzuron indicated the involvement of non-specific metabolic pathways in resistance to teflubenzuron, rather than target site modification. A positive correlation between enhanced GST activities and deltamethrin resistance suggested that this mechanism might take place into the adaptive response of C. pomonella to pyrethroids treatments. Enhanced MFO activity was recorded in each instar of the two resistant strains compared to the susceptible one. But these activities were not correlated to the responses to deltamethrin nor to teflubenzuron. In the light of these findings, studying age-dependence of responses to selection is central to the implementation of monitoring tests of resistances, especially if the target instars are difficult to collect in the field.  相似文献   

16.
辛硫磷和溴氰菊酯混剂对家蝇抗性发展的影响   总被引:4,自引:2,他引:2  
以家蝇(Musca domestica vicina Macquart)为试虫,用辛硫磷溴氰菊酯单剂及不同配比的混剂进行汰选试验。所有混剂选育的家蝇抗性发展都很缓慢,而单剂抗性发展都很快。增效试验表明,辛硫磷与溴氰菊酯混配有明显增效作用,特别是对抗性品系。生化分析结果表明,对澳氰菊酯的抗性发展与酯酶的酶活升高有关。对辛硫磷抗性发展与多功能氧化酶的酶活升高和乙酰胆碱酯酶敏感性降低有关。混剂选育的家蝇其对单剂的敏感性的变化及酶系的变化,随着混剂的配比而变化。  相似文献   

17.
BackgroundVisceral leishmaniasis (VL) is targeted for elimination as a public health problem in Nepal by 2023. For nearly three decades, the core vector control intervention in Nepal has been indoor residual spraying (IRS) with pyrethroids. Considering the long-term use of pyrethroids and the possible development of resistance in the vector Phlebotomus argentipes sand flies, we monitored the susceptibility status of their field populations to the insecticides of different classes, in villages with and without IRS activities in recent years.Methodology/Principal findingsSand flies were collected from villages with and without IRS in five VL endemic districts from August 2019 to November 2020. The WHO susceptibility test procedure was adopted using filter papers impregnated at the discriminating concentrations of insecticides of the following classes: pyrethroids (alpha-cypermethrin 0.05%, deltamethrin 0.05%, and lambda-cyhalothrin 0.05%), carbamates (bendiocarb 0.1%) and organophosphates (malathion 5%). Pyrethroid resistance intensity bioassays with papers impregnated with 5× of the discriminating concentrations, piperonyl butoxide (PBO) synergist-pyrethroid bioassays, and DDT cross-resistance bioassays were also performed. In the IRS villages, the vector sand flies were resistant (mortality rate <90%) to alpha-cypermethrin and possibly resistant (mortality rate 90–97%) to deltamethrin and lambda-cyhalothrin, while susceptibility to these insecticides was variable in the non-IRS villages. The vector was fully susceptible to bendiocarb and malathion in all villages. A delayed knockdown time (KDT50) with pyrethroids was observed in all villages. The pyrethroid resistance intensity was low, and the susceptibility improved at 5× of the discriminating concentrations. Enhanced pyrethroid susceptibility after pre-exposure to PBO and the DDT-pyrethroid cross-resistance were evident.Conclusions/SignificanceOur investigation showed that P. argentipes sand flies have emerged with pyrethroid resistance, suggesting the need to switch to alternative classes of insecticides such as organophosphates for IRS. We strongly recommend the regular and systematic monitoring of insecticide resistance in sand flies to optimize the efficiency of vector control interventions to sustain VL elimination efforts in Nepal.  相似文献   

18.
The impact of deltamethrin‐impregnated cloth targets on Stegomyia polynesiensis (= Aedes polynesiensis) (Marks) (Diptera: Culicidae) was assessed under laboratory and semi‐field settings in French Polynesia. Stegomyia polynesiensis females were released into small laboratory cages and large field cages containing either a deltamethrin‐treated or an untreated navy blue cloth, and mosquito knock‐down and mortality were assessed. The 24‐h mortality rate in mosquitoes exposed to the insecticide‐treated target in small cages was 98.0%. These mosquitoes also demonstrated significantly higher levels of knock‐down than those exposed to the untreated target. Mortality in field cages was assessed at 24 and 48 h. The 24‐h mortality rate in mosquitoes exposed to the control target was 31.2%, whereas that in those exposed to the deltamethrin‐treated target was 54.3%. The 48‐h mortality rate was also elevated in mosquitoes exposed to the deltamethrin‐treated target, but this result did not differ significantly from that observed in mosquitoes exposed to the control target. The significant suppression of female S. polynesiensis by deltamethrin‐treated resting targets in this study indicates that these targets could play a role in the control of an important disease vector in the South Pacific region.  相似文献   

19.
The susceptibility of six Australian broiler house populations and an insecticide susceptible population of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), to cyfluthrin, beta-cyfluthrin, gamma-cyhalothrin, and deltamethrin was investigated. One broiler house population had equivalent susceptibility to the susceptible to beta-cyfluthrin and beta-cyhalothrin, with higher susceptibility to cyfluthrin and deltamethrin. The remaining five populations demonstrated strong resistance to cyfluthrin (19-37-fold), the insecticide used most widely for management of A. diaperinus in Australia. Each cyfluthrin-resistant population demonstrated reduced susceptibility to beta-cyfluthrin (resistance ratios were 8-17-fold), deltamethrin (2.5-8-fold), and gamma-cyhalothrin (6-12-fold) compared with the laboratory population, but cross-resistance patterns varied considerably between populations. Adding piperonyl butoxide (PBO) had no effect on the susceptibility of the susceptible population to any of the insecticides, but it increased the susceptibility of each of the five cyfluthrin-resistant populations: to cyfluthrin (synergism ratio range, 1.9-5.0-fold), beta-cyfluthrin (1.6-4.1-fold), and y-cyhalothrin (1.7-2.0-fold). PBO had a more variable effect on susceptibility to deltamethrin, with three of the cyfluthrin-resistant populations being more susceptible to deltamethrin in the presence of PBO, but susceptibility of the remaining two populations was unaffected by adding PBO (synergism ratio range, 0.9-2.5-fold). Overall, the addition of PBO to the four pyrethroids had variable effects on their susceptibility. This variability indicated the presence of other resistance mechanisms in beetle populations apart from metabolic resistance. In addition, the relative importance of metabolic resistance in each beetle population varied widely between pyrethroids. Thus, it cannot be assumed that PBO will reliably synergize pyrethroids against cyfluthrin-resistant lesser mealworm populations when using it to mitigate insecticide resistance.  相似文献   

20.
Phenotypic plasticity contributes to the adaptative evolution of populations exposed to new or altered environments. Feeding plasticity is a component of phenotypic plasticity not usually considered in insect strains adapted to insecticide‐altered environments, but which may either accentuate or mitigate insecticide resistance. This is a concern in the pyrethroid‐resistant strains of the maize weevil Sitophilus zeamais Motsch. (Col., Curculionidae), and the reason for this study. A pyrethroid‐susceptible and two pyrethroid‐resistant strains of maize weevil were subjected to free‐choice and no‐choice tests with maize grains sprayed with increasing doses of the pyrethroid, deltamethrin. The insects from the pyrethroid‐resistant strains exhibited higher feeding avoidance with increased deltamethrin doses than insects from the susceptible strain when subjected to free‐choice tests. The strains of maize weevil physiologically resistant to pyrethroids were also behaviourally resistant to deltamethrin – an additional management concern. The resistant strains avoid deltamethrin‐sprayed grains and are less nutritionally affected by this compound, with divergent responses from the susceptible strain with increased doses of deltamethrin. Furthermore, the higher relative growth rate and consequently higher efficiency of food conversion observed in the insecticide‐resistant strains were significant even without insecticide exposure, indicating that these traits are stimulus‐independent and may persist even without further insecticide selection, potentially limiting the options available for their management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号