首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以本氏烟草(Nicotiana benthamiana)为植物材料,分析了不同农杆菌菌株(LBA4404菌株、EHA105菌株、GV3101菌株)、菌液浓度以及侵染时间在瞬时转化过程中对报告基因GFP荧光表达量的影响。结果显示,不同的农杆菌菌株瞬时表达外源基因的最适浓度和时间均有所不同:LBA4404菌株在菌悬液OD600值为0.8时所介导的瞬时表达效率最高;而EHA105和GV3101菌株在菌悬液OD600值为0.6时可达到最高瞬时表达效率。LBA4404菌株所介导的瞬时表达在农杆菌注射后第2天时表达量最高,而EHA105和GV3101菌株所介导的瞬时表达在农杆菌注射后第4天时表达量最高。不同菌株间比较分析表明,LBA4404菌株所介导的瞬时表达效率最高。上述结果表明,农杆菌菌株以及浓度和侵染时间等转化条件均是影响瞬时表达效率的重要因素。  相似文献   

2.
Reed (Phragmites communis) is a potential bioenergy plant. We report on its first Agrobacterium‐mediated transformation using mature seed‐derived calli. The Agrobacterium strains LBA4404, EHA105, and GV3101, each harboring the binary vector pIG121Hm, were used to optimize T‐DNA delivery into the reed genome. Bacterial strain, cocultivation period and acetosyringone concentration significantly influenced the T‐DNA transfer. About 48% transient expression and 3.5% stable transformation were achieved when calli were infected with strain EHA105 for 10 min under 800 mbar negative pressure and cocultivated for 3 days in 200 μm acetosyringone containing medium. Putative transformants were selected in 25 mg l?1 hygromycin B. PCR, and Southern blot analysis confirmed the presence of the transgenes and their stable integration. Independent transgenic lines contained one to three copies of the transgene. Transgene expression was validated by RT‐PCR and GUS staining of stems and leaves.  相似文献   

3.
Agrobacterium-mediated transformation in Citrullus lanatus   总被引:1,自引:1,他引:0  
Agrobacterium tumefaciens-mediated transformation was used to produce transgenic watermelon. Cotyledonary explants of Citrullus lanatus Thumb (cv. Daesan) were co-cultivated with Agrobacterium strains (LBA4404, GV3101, EHA101) containing pPTN289 carrying with bar gene and pPTN290 carrying with nptII gene, respectively. There was a significant difference in the transformation frequency between bacteria strains and selective markers. The EHA101/pPTN289 showed higher transformation frequency (1.16 %) than GV3101/pPTN289 (0.33 %) and LBA4404/pPTN289 or /pPTN290 (0 %). The shoots obtained (633 and 57 lines) showed some resistance to glufosinate and paromomycin, respectively. Of them, the β-glucuronidase positive response and PCR products amplified by bar and nptII specific primers showed at least 21 plants resistant to glufosinate and at least 6 plants to paromomycin. Southern blot analysis revealed that the bar gene integrated into genome of transgenic watermelon. Acclimated transgenic watermelons were successfully transplanted in the greenhouse and showed no phenotypic variation.  相似文献   

4.
Agrobacterium-mediated genetic transformation is the most preferred strategy utilized for plant genetic transformation. The present study was carried out to analyze the influence of three different strains of Agrobacterium tumefaciens on genetic transformation of Bacopa monnieri (L.) Pennell. In the present study, B. monnieri was genetically transformed with three different strains of A. tumefaciens viz. LBA4404, EHA105 and GV3101 harbouring expression vector pCAMBIA2301 containing β-glucuronidase (GUS) as a reporter gene. The putative transformants were analyzed by PCR method using transgene specific primers. Expression and presence of GUS reporter protein were analyzed by histochemical staining assay and quantitative analysis of GUS enzyme was done using fluorometric assay. No statistically significant difference in transformation efficiency was found for all the three strains. Interestingly, Gus expression was variable with LBA4404 plants showing highest GUS activity.  相似文献   

5.
Agrobacterium-mediated genetic transformation has been widely used to generate transgenic plants in angiosperms. However, progress in conifer species has lagged because of the recalcitrant nature of gene transfer. In this study, a transgenic plant regeneration system has been established for slash pine (Pinus elliottii Engelm.) using Agrobacterium-mediated transformation. Among the different Agrobacterium tumefaciens strains (EHA105, GV3101, and LBA4404) tested, the highest frequency (60%) of transient β-glucuronidase-expressing embryos was obtained from Agrobacterium strain GV3101 with over 330 blue spots per embryo. To improve the frequency of transformation, different cocultivation conditions were analyzed. Combination of Agrobacterium density at OD600?=?0.9, 50 s sonication of embryos, and the addition of 50 μM acetosyringone produced the highest transformation efficiency, in which 56.2% of embryos formed hygromycin-resistant calli. Transient gene expression was observed in cotyledons and hypocotyls, but transgenic plants were only produced from callus cultures derived from embryonic cotyledons of transformed slash pine. Stable integration of transgenes in the plant genome of slash pine was confirmed by polymerase chain reaction, Southern blot, and Northern blot analyses. Transgenic lines with a single T-DNA copy were produced from Agrobacterium strains EHA105 (80.4%), GV3101 (95.7%), and LBA4404 (66%). These results demonstrated that a stable transformation system has been established in slash pine, and this system could provide an opportunity to transfer economically important genes into slash pine.  相似文献   

6.
A transformation system for Campanula glomerata 'Acaulis' based on the co-cultivation of leaf explants with Agrobacterium tumefaciens LBA4404 or EHA105 was developed. A. tumefaciens was eliminated when the explants were cultured on medium containing 400 mg/l vancomycin and 100 mg/l cefotaxime. Transgenic plants containing the uidA gene that codes for #-glucuronidase (gus) were obtained following co-cultivation with either strain of A. tumefaciens, LBA4404 or EHA105, both of which harbored the binary vector pGUSINT, coding for the uidA and neomycin phosphotransferase II (nptII) genes. While the transformation frequency (2-3%) was similar for both strains, A. tumefaciens LBA4404 was effectively eliminated from Campanula at a lower concentration of antibiotic as compared to EHA105. The concentration of individual antibiotics required to eliminate EHA105 resulted in a decreased rate (55-67%) of regeneration. The highest percentage of explants that regenerated plants (79%) and the highest regeneration rate was achieved with 100 mg/l cefotaxime combined with 400 mg/l vancomycin. Plants were also transformed with the isopentenyl transferase (ipt) gene using LBA4404 containing the 35S-ipt vector construct (pBC34).  相似文献   

7.
Quantitative in vitro antibacterial activities, i.e., minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs), of 12 -lactam antibiotics against Agrobacterium tumefaciens strains LBA4404 and EHA101 were examined, in order to identify antibiotics effective in eliminating the bacteria in Agrobacterium-mediated plant genetic transformation. The antibacterial activities of -lactams tested against strain EHA101 were equal to or less than those tested against strain LBA4404. Cefotaxime, cefbuperazone, and meropenem had high activities against strain LBA4404 (MBC <1 mg l–1). Against strain EHA101, however, only meropenem showed activity comparable to that against strain LBA4404. The production of -lactamase was observed only in strain EHA101.Abbreviations CFU Colony-forming unit - MBC Minimum bactericidal concentration - MIC Minimum inhibitory concentration - PBP Penicillin-binding protein  相似文献   

8.
Three antibiotics were evaluated for their effects on the elimination of Agrobacterium tumefaciens during the genetic transformation of loblolly pine ( Pinus taeda L.) using mature zygotic embryos as targets. Agrobacterium tumefaciens strains, EHA105, GV3101, and LBA 4404, all harbouring the plasmid pCAMBIA1301, which carries the selectable marker gene, hygromycin phosphotransferase ( hpt) controlled by the cauliflower mosaic virus 35S promoter and terminator, and the uidA reporter gene (GUS) driven by the cauliflower mosaic virus 35S promoter and the terminator of nopaline synthase gene, were used in this study. Exposure to 350 mg l-1 carbenicillin, claforan, and timentin respectively for up to 6 weeks did not eliminate the Agrobacterium, while antibiotics at 500 mg l-1 eradicated them from the co-cultivated zygotic embryos. All three antibiotics increased callus growth and shoot regeneration at 350 and 500 mg l-1 each, but reduced callus growth and shoot regeneration at 650 mg l-1 when compared with controls. Putative transgenic calli were selected for continued proliferation and differentiation on 4.5 mg l-1 hygromycin-containing medium. Transformed calli and transgenic plants produced on a selection medium containing 4.5 mg l-1 hygromycin were confirmed by GUS histochemical assays, by polymerase chain reaction (PCR), and by Southern blot analysis. These results are useful for future studies on optimizing genetic transformation procedures in loblolly pine.  相似文献   

9.
10.
The influence of CaCl2 was investigated on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis friable calli which are usually proliferated on maintenance medium (MM) containing 9 mM CaCl2.Five A. tumefaciens strains (C58pMP90, C58pGV2260, AGL1, LBA4404 and EHA 105) and two binary vectors (pGIN and pCAMBIA2301) were tested and the strain EHA105pC2301 was selected to conduct further experiments. The calli were precultured on MM containing a range of CaCl2 concentrations, then inoculated with Agrobacterium suspension. Transfer of friable calli from MM containing 9 mM CaCl2 to calcium-free medium significantly enhanced the transient β-glucuronidase activity. Interestingly, the use of calcium-free Agrobacterium resuspension medium to inoculate friable calli again dramatically increased the transformation efficiency. Induction of Agrobacterium's virulence with acetosyringone remained an important factor to stimulate transformation. Received: 14 October 1999 / Revision received: 3 January 2000 / Accepted: 4 January 2000  相似文献   

11.
Procedure for the Agrobacterium tumefaciens mediated T-DNA delivery into the elite clone(s) of Eucalyptus tereticornis using leaf explants from microshoots has been developed. Amongst two strains of A. tumefaciens namely, EHA105 and LBA4404 (harbouring pBI121 plasmid), strain EHA105 was found to be more efficient. Pre-culturing of tissue (2 days) on medium supplemented with 100 μM acetosyringone, before bacterial infection significantly increased transient expression of reporter gene (GUS). Co-cultivation period of 2 days and a bacterial density of 0.8 OD600 resulted in higher transient GUS expression. Method of injury to tissue, presence of acetosyringone in co-cultivation medium and photoperiod during co-cultivation also influenced the expression of transient GUS activity. Amongst the three clones tested, maximum transient GUS activity was recorded in clone ‘CE2’ followed by clone ‘T1’. Regeneration of transformed shoots was achieved on modified Murashige and Skoog medium (potassium nitrate was replaced with 990 mg/l potassium sulphate and ammonium nitrate with 392 mg/l ammonium sulphate, and mesoinositol concentration was increased to 200 mg/l). Stable transformation was confirmed on the basis of GUS activity and PCR amplification of DNA fragments specific to uidA and nptII genes. The absence of bacteria in the stable transformed tissues was confirmed by PCR amplification of fragment specific to 16S rRNA of bacteria.  相似文献   

12.
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae [(Ishiyama) Swings et al. 1990] (Xoo), is a major rice disease of the second crop season in Taiwan. A total of 88 Xoo strains collected from 10 major rice cultivating areas in Taiwan from 1986, 1997, 2000, 2004, and 2011 were characterized by repetitive‐element PCR (REP‐PCR) fingerprinting and virulence analyses. Among the five genetic clusters identified by the pJEL1/pJEL2 (IS1112‐based) and REP1R‐Dt/REP2‐D [repetitive extragenic palindromic (REP)‐based] primer sets, clusters A, C and D contained Xoo strains from geographically distant regions, which suggests a high frequency of Xoo dispersal in Taiwan. The 88 Xoo strains were evaluated by inoculations on IRBB near‐isogenic lines and five Taiwan rice cultivars. A subset of 45 moderately or highly virulent strains were classified into 15 pathotypes by their compatible or incompatible reactions on IR24 and 12 IRBB near‐isogenic lines, each containing a single resistance gene. Analysis of molecular haplotypes and pathotypes revealed a partial relationship. IRBB5, IRBB21 and IRBB4 were incompatible with 96%, 96% and 73% of the strains, so xa5, Xa21 and Xa4 can recognize most of the Xoo strains in Taiwan and elicit resistance. In contrast, IRBB3 (Xa3), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13) and IRBB14 (Xa14) were susceptible to almost all of the 45 Xoo strains. Inoculation trials revealed significant differences in the susceptibility of five Taiwan cultivars to Xoo (from high to low susceptibility: Taichung Sen 10 >  IR24, Taichung Native 1 >  Taichung 192, Taikeng 9, Tainan 11). This study provides useful information for resistance breeding and the development of disease management strategies against bacterial blight disease of rice.  相似文献   

13.
Agrobacterium-mediated genetic transformation is a method of choice for the development of transgenic plants. The presence of latentAgrobacterium that multiplies in the plant tissue in spite of antibiotic application confounds the results obtained by polymerase chain reaction (PCR) analysis of putative transgenic plants. The presence ofAgrobacterium can be confirmed by amplification of eitherAgrobacterium chromosomal genes or genes present out of transfer DNA (T-DNA) in the binary vector. However, the transgenic nature ofAgrobacterium-contaminated transgenic plants cannot be confirmed by PCR. Here we report a simple protocol for PCR analysis ofAgrobacterium-contaminated transgenic plants. This protocol is based on denaturation and renaturation of DNA. The contaminating plasmid vector becomes double-stranded after renaturation and is cut by a restriction enzyme having site(s) within the PCR amplicon. As a result, amplification by PCR is not possible. The genomic DNA with a few copies of the transgene remains single-stranded and unaffected by the restriction enzyme, leading to amplification by PCR. This protocol has been successfully tested with 4 different binary vectors and 3Agrobacterium tumefaciens strains: EHA105, LBA4404, and GV3101.  相似文献   

14.
15.
Factors influencing the efficiency of Agrobacterium-mediated transformation of pea were tested using highly efficient, direct regeneration system. The virulence of three Agrobacterium strains (octopine LBA 4404, nopaline C58C1 and succinamopine, hypervirulent EHA 105) clearly varied giving 1 transgenic plant per 100 explants for LBA 4404, 2.2 for C58C1 and 8.2 for EHA 105. To test the efficacy of selection agents we used the hypervirulent EHA 105 strain carrying pGPTV binary vector with one of four different selection genes: nptII, hpt, dhfr or bar. The mean number of transgenic, kanamycin-resistant plants for two cultivars tested was 4.2 per 100 explants and was slightly higher than the number of phosphinothricin-resistant plants (3.6 plants per 100 explants). The proportion of transgenics among kanamycin-selected plants was also higher than among phosphinothricin-resistant plants (35% and 28% respectively). There was no regeneration on hygromycin or methotrexate media (transformation with hpt and dhfr genes). Acetosyringone had no apparent influence on efficiency of transformation with hypervirulent EHA 105 strain, however it did affect the rate of transformation when moderately virulent C58C1 was used. Recovery of transgenic plants was enhanced after application of 5-azacytidine. The presence of integrated T-DNA was checked by PCR and confirmed by Southern hybridization. T-DNA was stably transmitted to the next generation.  相似文献   

16.
Efficient Agrobacterium tumefaciens-mediated transformation and a higher recovery of transformed plants of cucumber cv. Poinsett76 were achieved via direct organogenesis from cotyledon explants. Stable transformants were obtained by inoculating explants with A. tumefaciens strains EHA105 or LBA4404, both harboring the binary vector pME508, which contains the neomycin phosphotransferase II (nptII) and phosphinothricin resistance genes (bar) conferring resistance to kanamycin and PPT, respectively, as selectable markers and the sgfp-tyg gene for the green fluorescent protein (GFP) as a visual marker driven by the constitutive CaMV35S promoter in the presence of acetosyringone (50 μM). Transformed shoots were obtained on MS Murashige and Skoog (Plant Physiol. 15: 473–497, 1962) medium supplemented with 1 mg L−1 benzyladenine (BA), 20 mg L−1 l-glutamine and 2 mg L−1 phosphinothricin (PPT) or 100 mg L−1 kanamycin. The regenerated shoots were examined in vivo using a hand-held long wave UV lamp for GFP expression. The GFP screening helped identify escapes and chimeric shoots at regular intervals to increase the growth of transformed shoots on cotyledon explants. Elongation and rooting of putative transformants were achieved on PPT (2 mg L−1) containing MS media with 0.5 mg L−1 gibberellic acid (GA3) and 0.6 mg L−1 indole butyric acid (IBA), respectively. PCR and Southern analyses confirmed the integration of the sgfp gene into the genome of T0 and the progenies. T1 segregation of transgenic progeny exhibited Mendelian inheritance of the transgene. The use of EHA105 resulted in 21% transformation efficiency compared to 8.5% when LBA4404 was used. This higher rate was greatly facilitated by PPT selection coupled with effective screening of transformants for GFP expression, thus making the protocol highly useful for the recovery of a higher number of transgenic cucumber plants.  相似文献   

17.
To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry.  相似文献   

18.
Several factors were investigated for their influence on the transfer of an intron-containing β-glucuronidase (GUS) gene into blueberry (Vaccinium spp.) leaf explants during the early stages of Agrobacterium-mediated gene transfer, including days of cocultivation, strain of Agrobacterium tumefaciens, explant age and genotype. The number of GUS-expressing leaf zones and calli were counted immediately and 2 weeks after cocultivation, respectively, to evaluate the gene transfer process. Agrobacterium tumefaciens strain EHA105 (pEHA105/p35SGUS-int) was significantly more effective for transformation than strain LBA4404 (pAL4404/p35SGUSint). Four days of cocultivation with A. tumefaciens strain EHA105 yielded about 50-fold more GUS-expressing zones than 2 days of cocultivation. Significant differences among cultivars were observed for both GUS-expressing leaf zones and calli. For some cultivars, explant age influenced the number of GUS-expressing leaf zones and calli. In most cases, the number of GUS-expressing calli was highest in those cultivars where GUS expression in the leaves was high. Received: 25 May 1998 / Revision received: 29 July 1998 / Accepted: 14 August 1998  相似文献   

19.
Penicillium marneffei is an opportunistic fungal pathogen of humans, causing respiratory, skin, and systemic mycosis in south-east Asia. Here we describe the transformation of P. marneffei with Agrobacterium tumefaciens, and the optimization of the transformation procedure. Transformations in different combinations between A. tumefaciens stains (LBA4404 and EHA105) and binary vectors (pCB309A, pBI129A, and pCaMBIA1312A) showed that EHA105/pBI129A were the most efficient partners. Southern blot analysis suggested that 87.5 % of transformants obtained with this protocol displayed single hybridization bands, indicating a single insert of T-DNA in each of the transformants. Unique hybridization patterns, along with thermal asymmetric interlaced PCR (TAIL-PCR) analysis of T-DNA insertion sites, suggested that A. tumefaciens-mediated transformation may be a powerful tool for insertional mutagenesis in P. marneffei. Several mutants with altered phenotypes were obtained during the construction of the mutant library, indicating the usefulness of the approach for functional genetic analysis in this important fungal pathogen.  相似文献   

20.
The study was carried out to evaluate the amenability of tropical inbred and hybrid maize lines, using Agrobacterium mediated transformation technique. Agrobacterium tumefaciens strains EHA101 harbouring a pTF102 binary vector, EHA101, AGL1, and LBA4404 harbouring pBECK2000.4 plasmid, LBA4404, GV and EHA105 harbouring pCAMBIA2301 plasmid, and AGL1 harbouring the pSB223 plasmid were used. Delivery of transgenes into plant tissues was assessed using transient β-glucuronidase (gus) activity on the 3rd and 4th day of co-cultivation of the infected Immature Zygotic Embryos (IZEs) and embryogenic callus. Transient gus expression was influenced by the co-cultivation period, maize genotype and Agrobacterium strain. The expression was highest after the 3rd day of co-culture compared to the 4th day with intense blue staining was detected for IZEs which were infected with Agrobacterium strains EHA105 harbouring pCAMBIA2301 and EHA101 harbouring pTF102 vector. Putative transformants (To) were regenerated from bialaphos resistant callus. Differences were detected on the number of putative transformants regenerated among the maize lines. Polymerase chain reaction (PCR) amplification of Phosphinothricin acetyltransferase (bar) and gus gene confirmed the transfer of the transgenes into the maize cells. Southern blot hybridization confirmed stable integration of gus into PTL02 maize genome and segregation analysis confirmed the inheritance of the gus. A transformation efficiency of 1.4 % was achieved. This transformation system can be used to introduce genes of interest into tropical maize lines for genetic improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号